XtraEdge for IITJJEE

Physics Challenges
Catalyst Chemistry
Mathematics Challenges
\checkmark IIT Neas
$\checkmark K_{\text {ey }}$ Comapt
\checkmark Suroens Stay
\checkmark XtraElige Tat Sereses

1 vad

Hipibility	\$chelarstip
	$80 \%+U 5$
AEEE 2011 Al india fark (N) 5020.000	80\%
265 in 12th PCM with 2l0S agpughe NTSE al Round Oux or WPY relected. Ind round quitied in Olmpiad by IAPT / Homi Patha Decst)	$\pi / 4.15$
 	N05
NTSE Znd Round qualfed or RVPY Znd Round Ounited	$40 \%+159$
2904 in 12th FCM OH 2954 in IDA Sc + Mansi Of Ginde AI in both Sc. 5 Mat in 10n OR Od student of setsion 1011 from D' Sranchfranchisee Kata May Long	45
NTSE 1at flayd analied $\mathrm{CH} \geq 85 \mathrm{H}=12 \mathrm{~h}$ FCM0 Combination ot Gade A1 b A2 in © $\mathrm{C} .+$ Mat I in class toth	205

Scholarship for Other Courses Stidy Support Scholarstip (CP-SSS) for IIT JEE	
Eligilility	Schelaritip
For Foundativa Course fi Fresher Coorse	
285\% agpe On Grade at it all notect in class 100n	70\% + L5P
2965 in 100t $15 \mathrm{c}+$ Matwi OR Grase A1 in boh Sc. \& Matha in clans 10h	70%
	$485+45 P$
2sens in toth ($\mathrm{Sc}+$ Mathu) QR Combination of Gade A1 6 A 2 in $8 \mathrm{c}+$ + Matht in clast 10 A 04 student of Session 2010-11 hom Op Branc/	456
Factines Kota ham Year tong Courne For Fiesbet! 2065 in 10th ISC + Muhtu OR Grade 82 in Both	255
Sc. be Marin 10t Of NTSE tst hound qualled	20%
On the basis of CP Entrance Test	
Enturce lest Tap Runers	905+459
On the truir of Purformance in fatrance lest	$96 \mathrm{~K} .20 \%$ 4051720

CP Unique Scholarship Programme for Meritorious Students [CP-USP]

With the objective is produce tsp raskers f ts provife ultimete persenal care and the real competitive smirsment trand the elock, Carser Painfi Academic Team has imtroduced Uniepe Schalarslip Program.

- Coune lear Concrison At per the Scholanhig Planal Ee hastite
- Cath mow! miop pertormes for exch inst.
- CP Schola foward 'Cash Scholarshiplas 60.000:
- Aeglarattention by diectorsliftacity mentern
- Lorayfacity
- free Hoateiltaclity

Noter Free Houtel foclity wil be given in frat come first serve basis ubjected of avalublity of seat.
For more detals, please contact Mr. Nirnal Pahak at +91 - 76657. 19000 or cortact sur Keta atlice.

Admission Announcement for IIT-JEE

liruct Nanisties mid Scholantip SPECIAL BATCHES

1. As clasea wil be tiven by holly galled and experencod teriss frolly meinters
2. Speculbipliactict fictien Sient

3 Montres deventonanas n wish Atudethanothivetominird
4. Sirntaminpyork

Note: Hostel facility available at Career Point associated hostels

XtraEdge for IIT-JEE
 Volume - 7 Issue - 1

July, 2011 (Monthly Magazine)
Editorial / Mailing Office :
112-B, Shakti Nagar, Kota (Raj.)
Tel. : 0744-2500492, 2500692, 3040000
e-mail : xtraedge@gmail.com

Editor :

Pramod Maheshari
[B.Tech. IIT-Delhi]
Cover Design
Satyanarayan Saini

Layout

Rajaram Gocher

Circulation \& Advertisement

Praveen Chandna
Ph 0744-3040000, 9672977502

Subscription

Sudha Jaisingh Ph. 0744-2500492, 2500692
© Strictly reserved with the publishers

- No Portion of the magazine can be published/ reproduced without the written permission of the publisher
- All disputes are subject to the exclusive jurisdiction of the Kota Courts only.

Every effort has been made to avoid errors or omission in this publication. Inr spite of this, errors are possible. Any mistake, error or discrepancy noted may be brought to our notice which shall be taken care of in the forthcoming edition, hence any suggestion is welcome. It is notified that neither the publisher nor the author or seller will be responsible for any damage or loss of action to any one, of any kind, in any manner, there from.

> Unit Price ₹ 20/-
> Special Subscription Rates
> 6 issues : ₹ $100 /-$ [One issue free]
> 12 issues : ₹ $200 /-$ [Two issues free]
> 24 issues : ₹ 400 /- [Four issues free]

Owned \& Published by Pramod Maheshwari, 112, Shakti Nagar, Dadabari, Kota \& Printed by Naval Maheshwari, Published \& Printed at 112, Shakti Nagar, Dadabari, Kota.
Editor: Pramod Maheshwari

Dear Students,
"People with integrity do what they say they are going to do. Others have excuses."
Rudyard Kipling, the celebrated English author and poet, once said, "We have forty million reasons for failure, but not a single excuse." Yet today we are literally inundated with a tidal wave of excuses from every direction. In fact, it seems everyone has a reason, explanation or justification for not doing what they were supposed to do.
Why do so many of us crank out one excuse after another for virtually everything we fail to do? Well, for starters, excuses are easy. In fact, they're way too easy. After all, making excuses doesn't require any effort or commitment on our part. All we have to do is toss out excuse after excuse and we feel we're off the hook, since the best excuses always absolve us of any personal responsibility whatsoever.
While getting in the habit of making of excuses is easy, excuse making doesn't get any of us anywhere close to where we want to go in life. Sooner or later all of our years of excuses eventually catch up with us. Before we realize it, the best of life has slipped away in a lazy, hazy, crazy blur of excuses.
Ninety-nine percent of the failures come from people who have the habit of making excuses. Hold yourself responsible for a higher standard than anybody else expects of you, never excuse yourself.
The person who really wants to do something invariably finds a way to get it done. And for those who don't want to do something; well, one excuse is just as good as another I suppose. What it all boils down to is simply this: what kind of person do you really want to be? Do you want to make excuses - or make something happen instead?
It's time to turn all of your excuses loose once and for all. Each and every time you fall short, pick yourself up, learn from your mistakes and immediately get going again. No complaining, no explaining and absolutely no excuses allowed. You will find that the minute you stop making excuses and start finding a way to get the job done, you'll start making your life everything it could be and should be... and so much more.
Get rid of the excuses and you can get anywhere you've ever dreamed of going.
Presenting forever positive ideas to your success.

Yours truly

Pramod Maheshwari,
B.Tech., IIT Delhi

XtraEdge for IIT-JEE

Volume-7 Issue-1

July, 2011 (Monthly Magazine)

NEXT MONTHS ATTRAGTIONS

- Much more IIT-JEE News.
- Know IIT-JEE With 15 Best Questions of IIT-JEE
- Challenging Problems in Physics,, Chemistry \& Maths
- Key Concepts \& Problem Solving strategy for IIT-JEE.
- Xtra Edge Test Series for JEE- 2012 \& 2013

Success Tips for the Months

- The difference between a successful person and others is not a lack of strength, not a lack of knowledge, but rather a lack of will.
- Footprints on the sands of time are not made by sitting down.
- To succeed, we must first believe that we can.
- The secret of joy in work is contained in one word - excellence. To know how to do something well is to enjoy it.
- Six essential qualities that are the key to success: Sincerity, personal integrity, humility, courtesy, wisdom, charity.
- Continuous efforts - not strength or intelligence - is the key to unlocking our potential.
- We can do anything we want to do if we stick to it long enough.
- The path to success is to take massive, determined action.

CONTENTS

INDEX
 PAGE

Regulars

NEWS ARTICLE

- Now get Online access to IIT lectures, courses
- No more traffic jam as IITian designs compact electric car

IITian ON THE PATH OF SUCCESS

Mr. Avinash Chander \& Mr. Rahul Bhattacharjee
KNOW IIT-JEE
Previous IIT-JEE Question

Study Time.......

DYNAMIC PHYSICS
14
8-Challenging Problems [Set \# 2]
Students' Forum
Physics Fundamentals

- Capacitor-1
- Friction

CATALYSE CHEMISTRY

Key Concept

- Reaction Mechanism
- Energetics

Understanding : Organic Chemistry
DICEY MATHS
Mathematical Challenges
Students' Forum
Key Concept

- 3-Dimensional Geometry

- Progression \& Mathematical induction

Test Time

XTRAEDGE TEST SERIES
Class XII - IIT-JEE 2012 Paper
Class XI - IIT-JEE 2013 Paper

India's premier technical institute, the IITs, will now make all its engineering courses and lectures available for downloads to students, even on their mobile phones.
This is a part of an initiative by the National Programme on Technology Enhanced Learning (NPTEL). It is the country's largest technical knowledge dissemination programme.
So if you want an access to the lectures given by professors of IIT, IISc and NITs, you can do it from the NPTEL website www.nptel.iitm.ac.in and from YouTube www.youtube.com/iit. Students can get lectures in electrical, mechanical, civil and computer science engineering, and in both in web and video format.

During its first phase, each course will offer around 40 hours of lectures delivered by the country's best teachers from different IITs and the IISc

No more traffic jam as IITian designs compact electric car

In an attempt to fight the menace of traffic jams and decreasing road space, a student of master of design
programme of IIT-Kanpur has come up with a genius sample of a compact electric car which can be extended at the rear end to make a second seat. Targeting office goers who drive alone, the car has a single seat and is apt for those who do not use the entire seating capacity of the vehicle. Just one person in the car, these officer goers take up most of the road space, leading to traffic congestion.

The car, designed by Kumar Sudeepta, an MDes student of IIT-Kanpur, has been kept on display at the annual design exposition.

Christening the car as Growing Electric Vehicle (GeV), Sudeepta describes his car as front wheel-powered batterypropelled four-wheeler, which is designed on the lines of green urban transportation. The vehicle will surely address the problems of parking, traffic congestion and wastage of road space.
The main idea of GeV is to reduce the size of the vehicle, so that the cost of production of the vehicle is reduced and is pocket-friendly for the masses.
Made from fibre reinforced plastic, the body is light but at the same time has the strength and toughness of an ordinary car. The battery is situated in the front as it is a front wheel powered electric vehicle. The space created in the cabin near the rear seat can also be used to place additional luggage.
Explaining his invention to The Times of India, Sudeepta said, " GeV is a compact vehicle meant to carry one person on a normal course. It has a unique feature to extend at the rear and generate a second seat from beneath the driving seat inside the cabin so that a second passenger can also join in if need arises. The rear seat lies beneath the driving seat. When the cabin is extended it flushes out of the driving seat and gives enough space for a second rider."

Computer based JEE Exam?

Computer based entrance exams are becoming more popular among students and as well in exam conducting authorities. Last year Common Admission Test went online and All India Engineering Entrance Exam too followed the same path. Now, it is time for JEE to go online, JEE chairman decided to follow the suit. This prestigious entrance exam will soon become computer-based .
As the number of the IIT aspirants increasing, Joint admission board member said that it would take almost three years to develop a question bank before the JEE could be offered on computer mode.
IIT heads expressed their concern over the move and said that they would not be able to provide the question bank for JEE exam soon, as the JEE is also conducting in Singapore, and time differences would hit the testing process and time schedule.

IITs to help technical institutes

IITs may soon help to boost the standard of technical and engineering institutes which are often in limelight for offering poor academic standard to students.

The 40 -year-old Institutes of Technology Act is being amended so that IITs bear additional responsibility of supporting and collaborating with technical education institutions and
give advice to state governments on technological problems within the zone they are located.
The Institutes of Technology (Amendment) Bill, 2010 has made it mandatory for all 15 IITs to provide training, facilitate study visits, share laboratory and other resources with technical education institutions in their zones.

India, France seal IIT-Rajasthan plan

Taking their ties to the next level, India and France have recently signed two memorandums of understanding (MoUs) on higher education, and also decided to take forward 2009 'Plan of Action for IIT-Rajasthan' by setting up a French consortium that will help the institute gain expertise in areas like solar energy, aerospace, quantum computing, health technology and other fields.
The other MoU stresses on academic collaboration with seven IITs and ParisTech - Paris Institute of Science and Technology. This agreement seeks to promote institutional exchange, students exchange, short courses, educational programmes and joint research and exchange of information in teaching and student development.

IIT-B explains power of

 Homeopathy

Six months after the British Medical Association lashed homeopathy as witchcraft with no scientific basis, IIT scientists have said the sweet white pills work on the principle of nanotechnology.
In a latest research conducted by IIT, which is published in the latest issue of Homeopathy, a peer-reviewed journal from medical publishing firm

Elsevier, it was said that Homeopathic pills contain naturally occurring metals such as gold, copper and iron retain their potency even when diluted to a nanometre or one-billionth of a metre.

These results were found after students of IIT-B chemical engineering department bought homeopathic pills from nearby shops, prepared highly diluted solutions and checked these under powerful electron microscopes to find nanoparticles of the original metal.
The research says that homeopathy has been a mystery for modern medicine. Its practitioners maintained that homeopathic pills got more potent on dilution, but they could never explain the mechanism scientifically enough for the modern scientist.

Students of IIT Bombay have launched their own campus web based radio station.

The students were inspired by leading universities like MIT, Harvard and Yale that have their own successful on campus radio stations. Sajid Shariff, the general secretary of cultural affairs, IIT Bombay, says that they intend to provide the students through their LAN based radio station with a platform to voice their opinions, take part in debates and allow them to be more informed. The shows will include campus, city, national and international news, music, reviews of websites, information on books to read, gadgets, movies to watch, places and restaurants to hang out and extra-curricular activities. This is the first time a university in India has taken such an initiative.

IIT Kanpur's nano satellite may be launched by June-end

KANPUR: IIT Kanpur's indigenously built nano satellite 'Jugnu' may be successfully launched by the end of June this year from Sriharikota if everything goes according to plans.
Scientists from the Indian Space Research Organisation (Isro) had visited the institute last month and had given a green signal to the engineering model. The flight model is being assembled in Bengaluru.

IIT-K director Sanjay Govind Dhande today said that over 60 students and faculty members of the institute worked hard to built 'Jugnu', which weighs 3 kg .

Particle Accelerators Like This One Could Bring Safer Nuclear

Power to Neighborhoods

The Electron Model of Many
Applications, EMMA,

EMMA Installation Science and Technology Facilities Council-UK

A particle accelerator in the English countryside could be a harbinger of a safer, cleaner future of energy. Specifically, nuclear energy, but not the type that has brought havoc in Japan and controversy throughout Europe and the U.S. It would be based on thorium, a radioactive element that is much more abundant, and much more safe, than traditional sources of nuclear power.

Thorium reactors would not melt down, in part because they require an external input to produce fission. Thorium atoms would release energy when bombarded by high-energy neutrons, such as the type supplied in a particle accelerator.

- EMMA operates at around 20 MeV , or 20 million electronvolts, a paltry amount for an atom accelerator. The Tevatron, for instance, accelerates particles to 1 tera-electron volts. The Large Hadron Collider is designed to speed them to 7 TeV . But thorium reactors would not need such high energies to initiate fusion.

Mr. Avinash Chander obtained B.Tech degree from Indian Institute of Technology (IIT Delhi) in Electrical Engineering in 1972 and M.S. (Spatial Information Tech.), JNTU, Hyderabad. . Mr. Avinash Chander, Distinguished Scientist is the Director of Advanced Systems Laboratory, Hyderabad and an eminent scientist in the field of Missiles.
Mr. Chander joined DRDO in August 1972. A leader in missile technology, he is the Chief Designer of Long Range Missiles System. He has the unique achievement of delivering and deploying three weapon systems viz., A1, A2 and A3. He is currently the Programme Director for the Agni Missile Programme. His latest achievement is the successful development of 3000 kms range Agni-III Missile which is under induction.

AWARDS \& HONOURS:

- DRDO Scientist of the year 1989 - Awarded by Dr. PV. Narasimha Rao, Hon'ble Prime Minister of India.
- Astronautical Society of India Award for the year 1997 in the field of Rocketry -
- Awarded by Dr. R. Chidambaram, Principal Scientific Advisor to Govt. of India.
- AGNI Self-Reliance Award in 1999 - Awarded by Sri Atal Behari Vajpayee, Hon'ble Prime Minister of India.
- Dr. Biren Roy Space Science Award in 2000.
- DRDO Award for the year 2007 for Path Breaking Research /Outstanding Technology Development Awarded by Hon'ble Dr. Manmohan Singh, Prime Minister of India_
- Outstanding Technologist Award 2008 by Punjab Technical University, Jalandhar.
- DRDO Technology Leadership Award 2008 Awarded by Dr. A.K. Anthony, Hon'ble Defence Minister of India.
- Fellow, Indian National Academy of Engineers \& Convenor, Sub-Committee of Aerospace Section.
- Fellow, System Society of India.
- Fellow, Andhra Pradesh Academy of Sciences.
- Fellow \& Vice-President, Astronautical Society of India.
- Chairman-INSARM \& ISAMPE, Hyderabad Chapter.

Mr. Rahul Bhattacharjee M-Tech

Rahul Bhattacharjee, Topper, M Tech dual degree in Civil Engineering.
Confident and ready to take on life's new challenges, Rahul, is excited about stint at Massachusetts Institute of Technology. As his parents were both IIT-ians, Rahul made them proud by keeping the IIT tradition intact and passed out with flying colours. Rahul, who hails from Kolkata has settled in Mumbai.

IIT experience

Studying at IIT is an amazing experience because it is a pool of brains from diverse backgrounds. We get to meet and interact with people from different backgrounds: this helps instill in us many good qualities. It teaches you more and more. The qualities in several people appeal to you and our interaction with them help us develop into better individuals.
Your intellect matters too and, of course, a bit of luck!

Mantra for success

I had my father as a role model. I also put in a lot of hard work: about 8 to 9 hours everyday after the 10th standard.

Advice to IIT aspirants

Work hard. Keep your focus, be good at handling problems. Put in a lot of effort. Start right form your 10th standard.
The most important things is not just getting an admission in an IIT, but you learning to utilise the time and resources at the IIT in the best possible manner.

By Previous Exam Questions

PHYSICS

1. A 0.5 kg block slides from the point A (see fig.) on a horizontal track with an initial speed of $3 \mathrm{~m} / \mathrm{s}$ towards a weightless horizontal spring of length 1 m and force constant 2 Newton $/ \mathrm{m}$. The part AB of the track is frictionless and the part $B C$ has the coefficients of static and kinetic friction as 0.22 and 0.2 respectively. If the distances AB and BD are 2 m and 2.14 m respectively, find the total distance through which the block moves before it comes to rest completely. (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) [IIT-1983]

Sol. K.E. of block $=$ work against friction + P.E. of spring
$\frac{1}{2} \mathrm{mv}^{2}=\mu_{\mathrm{k}} \mathrm{mg}(2.14+\mathrm{x})+\frac{1}{2} \mathrm{kx}^{2}$
$\frac{1}{2} \times 0.5 \times 3^{2}=0.2 \times 0.5 \times 9.8(2.14+\mathrm{x})+\frac{1}{2} 2 \times \mathrm{x}^{2}$
$2.14+x+x^{2}=2.25$
$\therefore \mathrm{x}^{2}+\mathrm{x}-0.11=0$
On solving we get $x=-\frac{11}{10}$
or $x=\frac{1}{10}=0.1$ (valid answer)
Here the body stops momentarily.
Restoring force at $\mathrm{y}=\mathrm{kx}=2 \times 0.1=0.2 \mathrm{~N}$
Frictional force at

$$
\mathrm{y}=\mu_{\mathrm{s}} \mathrm{mg} \times \mathrm{x}=0.22 \times 0.5 \times 9.8=1.078 \mathrm{~N}
$$

Since friction force $>$ Restoring force the body will stop here.
\therefore The total distance travelled

$$
=\mathrm{AB}+\mathrm{BD}+\mathrm{DY}=2+2.14+0.1=4.24 \mathrm{~m}
$$

2. Masses M_{1}, M_{2} and M_{3} are connected by strings of negligible mass which pass over massless and friction less pulleys P_{1} and P_{2} as shown in fig. The masses move such the portion of the string between P_{1} and P_{2} in parallel to the inclined plane and the portion of the string between P_{2} and M_{3} is horizontal. The masses M_{2} and M_{3} are 4.0 kg each and the coefficient of kinetic friction between the masses and the surfaces is 0.25 . The inclined plane makes an angle of 37° with the horizontal.
[IIT-1981]

If the mass M_{1} moves downwards with a uniform velocity, find
(a) the mass of M_{1}
(b) The tension in the horizontal portion of the string $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}, \sin 37^{\circ} \approx 3 / 5\right)$
Sol. (a) Applying Fnet $=m a$ on M_{1} we get
$\mathrm{T}-\mathrm{m}_{1} . \mathrm{g}=\mathrm{M}_{1} \times 0=0 \Rightarrow \mathrm{~T}=\mathrm{M}_{1} \mathrm{~g}$
Applying Fnet $=\mathrm{Ma}$ on M_{2} we get

$$
\begin{align*}
& T-\left(T^{\prime}+M_{2} g \sin \theta-f\right)=M_{2} \times a \tag{i}\\
& T=T^{\prime}+M_{2} g \sin \theta+f=T^{\prime}+M_{2} g \sin \theta+\mu N
\end{align*}
$$

$$
\begin{equation*}
\left[\because \mathrm{f}=\mu \mathrm{N}=\mu \mathrm{M}_{2} \mathrm{~g} \cos \theta\right] \tag{ii}
\end{equation*}
$$

$\therefore \mathrm{T}=\mathrm{T}^{\prime}+\mathrm{M}_{2} \mathrm{~g} \sin \theta+\mu \mathrm{M}_{2} \mathrm{~g} \cos \theta$

Applying $\mathrm{F}_{\text {net }}=\mathrm{Ma}$ for M_{3} we get
$\mathrm{T}^{\prime}-\mathrm{f}^{\prime}=\mathrm{M}_{3} \times 0$
$\Rightarrow \mathrm{T}^{\prime}=\mathrm{f}^{\prime}=\mu \mathrm{N}^{\prime}=\mu \mathrm{M}_{3} \mathrm{~g}$
Putting the value of T and T^{\prime} from (i) and (iii) in (ii) we get
$M_{1} g=\mu M_{3} g+M_{2} g \sin \theta-\mu M_{2} g \cos \theta$
$\mathrm{M}_{1}=0.25 \times 4+4 \times \sin 37^{\circ}+0.25 \times 4 \times \cos 37^{\circ}$
$=4.2 \mathrm{~kg}$
(b) The tension in the horizontal string will be $\mathrm{T}^{\prime}=\mu \mathrm{M}_{3} \mathrm{~g}=0.25 \times 4 \times 9.8=9.8 \mathrm{~N}$
3. A small sphere rolls down without slipping from the top of a track in a vertical plane. The track in a vertical plane. The track has an elevated section and a horizontal part, The horizontal part is 1.0 meter above the ground level and the top of the track is 2.4 metres above the ground. Find the distance on the ground with respect to the point B (which is vertically below the end of the track as shown in fig.) where the sphere lands. During its flight as a projectile, does the sphere continue to rotate about its centers of mass ? Explain.
[IIT-1987]

Sol. Applying law of conservation of energy at point D and point A
P.E. at $\mathrm{D}=$ P.E. at $\mathrm{A}+(\text { K.E. })_{\mathrm{T}}+(\text { K.E. })_{\mathrm{R}}$
$(\text { K.E. })_{\mathrm{T}}=$ Translational K.E.
$m g(2.4)=m g(1)+\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
$(\text { K.E. })_{R}=$ Rotational K.E.
Since the case is of rolling without slipping

$\therefore \mathrm{v}=\mathrm{r} \omega$
$\therefore \omega=\frac{\mathrm{v}}{\mathrm{r}}$ where r is the radius of the sphere Also

$$
\mathrm{I}=\frac{2}{5} \mathrm{mr}^{2}
$$

$\therefore \mathrm{mg}(2.4)=\mathrm{mg}(1)+\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \times \frac{2}{5} \mathrm{mr}^{2} \times \frac{\mathrm{v}^{2}}{\mathrm{r}^{2}}$
$\Rightarrow \mathrm{v}=4.43 \mathrm{~m} / \mathrm{s}$
After point A, the body takes a parabolic path. The vertical motion parameters of parabolic motion will be

$$
\begin{array}{rlrl}
\mathrm{u}_{\mathrm{y}} & =0 & \mathrm{~S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \\
\mathrm{~S}_{\mathrm{y}} & =1 \mathrm{~m} & 1=4.9 \mathrm{t}_{\mathrm{y}}^{2} \\
\mathrm{a}_{\mathrm{y}} & =9.8 \mathrm{~m} / \mathrm{s}^{2} & & \mathrm{t}_{\mathrm{y}}=\frac{1}{\sqrt{4.9}}=0.45 \mathrm{sec}
\end{array}
$$

Applying this time in horizontal motion of parabolic path, $\mathrm{BC}=4.43 \times 0.45=2 \mathrm{~m}$

During his flight as projectile, the sphere continues to rotate because of conservation of angular momentum.
4. Two square metal plates of side 1 m are kept 0.01 m apart like a parallel plate capacitor in air in such a way that one of their edges is perpendicular to an oil surface in a tank filled with an insulating oil. The plates are connected to a battery of emf 500 V . The plates are then lowered vertically into the oil at a speed of $0.001 \mathrm{~ms}^{-1}$. Calculate the current drawn from the battery during the process. (Dielectric constant of oil $=11, \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-1}$)
[IIT-1994]
Sol. The adjacent figure is a case of parallel plate capacitor. The combined capacitance will be

$\mathrm{C}=\frac{\varepsilon_{0}}{\mathrm{~d}}[\mathrm{kx}+1-\mathrm{x}]$
After time dt , the dielectric rises by dx . The new equivalent capacitance will be

$$
\begin{aligned}
\mathrm{C} & +\mathrm{dC}=\mathrm{C}_{1}^{\prime}+\mathrm{C}_{2}^{\prime} \\
& =\frac{\mathrm{k} \varepsilon_{0}}{\mathrm{~d}}[(\mathrm{x}+\mathrm{dx}) \times 1]+\frac{\left.\varepsilon_{0}[1-\mathrm{x}-\mathrm{dx}) \times 1\right]}{\mathrm{d}}
\end{aligned}
$$

$$
\mathrm{dC}=\text { Change of capacitance in time } \mathrm{dt}
$$

$$
\begin{align*}
& =\frac{\varepsilon_{0}}{\mathrm{~d}}[\mathrm{kx}+\mathrm{kdx}+1-\mathrm{x}-\mathrm{dx}-\mathrm{kx}-1+\mathrm{x}] \\
& =\frac{\varepsilon_{0}}{\mathrm{~d}}(\mathrm{k}-1) \mathrm{dx} \\
& \frac{\mathrm{dC}}{\mathrm{dt}}=\frac{\varepsilon_{0}}{\mathrm{~d}}(\mathrm{k}-1) \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\varepsilon_{0}}{\mathrm{~d}}(\mathrm{k}-1) \mathrm{v} \tag{i}
\end{align*}
$$

where $\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}$
We know that $\mathrm{q}=\mathrm{CV}$

$$
\begin{array}{r}
\frac{\mathrm{dq}}{\mathrm{dt}}=\mathrm{V} \frac{\mathrm{dC}}{\mathrm{dt}} \tag{ii}\\
\Rightarrow \quad \mathrm{I}=\mathrm{V} \frac{\varepsilon_{0}}{\mathrm{~d}}(\mathrm{k}-1) \mathrm{V}
\end{array}
$$

From (i) and (ii)

$$
\begin{aligned}
& \mathrm{I}=\frac{500 \times 8.85 \times 10^{-12}}{0.01}(11-1) \times 0.001 \\
& =4.425 \times 10^{-9} \mathrm{Amp}
\end{aligned}
$$

5. Two resistors, 400 ohms, and 800 ohms are connected in series with a 6 -volt battery. It is desired to measure the current in the circuit. An ammeter of a 10 ohms resistance is used for this purpose. What will be the reading in the ammeter? Similarly, If a voltmeter of 10,000 ohms resistance is used to measure the potential difference across the 400ohms resistor, What will be the reading in the voltmeter.
[IIT-1982]
Sol. Applying Kirchoff's law moving in clockwise direction starting from battery we get

$+6-10 \mathrm{I}-400 \mathrm{I}-800 \mathrm{I}=0$
$\therefore 6=1210 \mathrm{I}$
$\therefore \mathrm{I}=\frac{6}{1210}=4.96 \times 10^{-3} \mathrm{~A}$
The voltmeter and 400Ω resistor are in parallel and hence p.d. will be same
$\therefore 10,000 \mathrm{I}_{1}=400 \mathrm{I}_{2}$
Applying Kircoff's law in loop ABCDEA starting from A in clockwise direction.

$$
\begin{aligned}
& -400 \mathrm{I}_{2}-800 \mathrm{I}+6=0 \\
\therefore 6= & 400 \mathrm{I}_{2}+800\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \\
\therefore 6= & 400 \mathrm{I}_{2}+800\left(0.04 \mathrm{I}_{2}+\mathrm{I}_{2}\right)
\end{aligned}
$$

From (i) putting the value of I_{1}
$\therefore 6=1232 \mathrm{I}_{2}$

$\therefore \mathrm{I}_{2}=4.87 \times 10^{-3} \mathrm{Amp}$.
Potential drop across 400Ω resistor
$=\mathrm{I}_{2} \times 400$
$=4.87 \times 10^{-3} \times 400$
$=1.948$ volt ≈ 1.95 volt
$\therefore \quad$ The reading measured by voltmeter $=1.95$ volt

CHEMISTRY

6. A solution contains $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3} .10 \mathrm{ml}$ of this requires 2.0 ml of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ for neutralization using phenolphthalein as indicator. Methyl orange is then added when a further 2.5 ml of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ was required. Calculate the strength of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} in solution.
[IIT-1978]
Sol. Step 1.
Equivalent mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\text { Molecular mass }}{2}$
$=\frac{106}{2}=53$
Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution $=\frac{\mathrm{m}_{1}}{53} \times 1000$

Step 2.

Equivalent mass of $\mathrm{NaHCO}_{3}=\frac{\text { Molecular mass }}{1}$

$$
=84
$$

Meq. of NaHCO_{3} in solution $=\frac{\mathrm{m}_{2}}{84} \times 1000$

Step 3.

Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used with phenolphthalein
$=$ Valency factor \times Molarity \times Volume (ml)
$=2 \times 0.1 \times 2.0=0.4$
$2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used with phenolphthalein

$$
=\frac{1}{2} \text { Meq. of } \mathrm{Na}_{2} \mathrm{CO}_{3} \therefore \frac{1}{2} \text { Meq. of } \mathrm{Na}_{2} \mathrm{CO}_{3}=0.4
$$

Step 4.

Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used with methyl orange
$=$ Valency factor \times molarity \times volume (ml)
$=2 \times 0.2 \times 2.5=1$
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used with methyl orange

$$
\begin{aligned}
& \quad=\text { Meq. of } \mathrm{NaHCO}_{3}+\frac{1}{2} \text { Meq. of } \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& \therefore \quad \text { Meq. of } \mathrm{NaHCO}_{3}+\frac{1}{2} \text { Meq. of } \mathrm{Na}_{2} \mathrm{CO}_{3}=1 \\
& \therefore \quad \text { Meq. of } \mathrm{NaHCO}_{3}=1-0.4=0.6 \\
& \text { and } \quad \text { Meq. of } \mathrm{Na}_{2} \mathrm{CO}_{3}=2 \times 0.4=0.8
\end{aligned}
$$

Step 5.

$$
\frac{\mathrm{m}_{1}}{53} \times 1000=0.8 \text { or } \mathrm{m}_{1}=\frac{0.8 \times 53}{1000}=0.0424
$$

\therefore Strength of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $=\frac{0.0424 \times 1000}{10}$

$$
=4.24 \mathrm{~g} \mathrm{~L}^{-1}
$$

Step 6.

$$
\frac{\mathrm{m}_{2}}{84} \times 1000=0.6 \text { or } \mathrm{m}_{2}=\frac{0.6 \times 84}{1000}=0.0504
$$

\therefore Strength of NaHCO_{3} solution $=\frac{0.0504 \times 1000}{10}$

$$
=5.04 \mathrm{~g} \mathrm{~L}^{-1}
$$

7. The molar volume of liquid benzene
(density $=0.877 \mathrm{~g} \mathrm{ml}^{-1}$) increases by a factor of 2750 as it vaporizes at $20^{\circ} \mathrm{C}$ and that of liquid toluene (density $=0.867 \mathrm{~g} \mathrm{ml}^{-1}$) increases by a factor of 7720 at $20^{\circ} \mathrm{C}$. A solution of benzene and toluene at $20^{\circ} \mathrm{C}$ has a vapour pressure of 46.0 torr. Find the mole fraction of benzene in vapour above the solution.
[IIT-1996]
Sol. Given that,
Density of benzene $=0.877 \mathrm{~g} \mathrm{ml}^{-1}$
Molecular mass of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$

$$
=6 \times 12+6 \times 1=78
$$

\therefore Molar volume of benzene in liquid form $=\frac{78}{0.877} \mathrm{ml}$

$$
=\frac{78}{0.877} \times \frac{1}{1000} \mathrm{~L}=244.58 \mathrm{~L}
$$

And molar volume of benzene in vapour phse

$$
=\frac{78}{0.877} \times \frac{2750}{1000} \mathrm{~L}=244.58 \mathrm{~L}
$$

Density of toluene $=0.867 \mathrm{~g} \mathrm{ml}^{-1}$
Molecular mass of toluene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$

$$
=6 \times 12+5 \times 1+1 \times 12+3 \times 1=92
$$

\therefore Molar volume of toluene in liquid form

$$
=\frac{92}{0.867} \mathrm{ml}=\frac{92}{0.867} \times \frac{1}{1000} \mathrm{~L}
$$

And molar volume of toluene in vapour phase

$$
=\frac{92}{0.867} \times \frac{7720}{1000} \mathrm{~L}=819.19 \mathrm{~L}
$$

Using the ideal gas equation,

$$
\begin{aligned}
& \mathrm{PV} & =\mathrm{nRT} \\
\text { At } & \mathrm{T} & =20^{\circ} \mathrm{C}=293 \mathrm{~K}
\end{aligned}
$$

For benzene, $\mathrm{P}=\mathrm{P}_{\mathrm{B}}^{0}=\frac{\mathrm{nRT}}{\mathrm{V}}$

$$
\begin{aligned}
& =\frac{1 \times 0.082 \times 293}{244.58}=0.098 \mathrm{~atm} \\
& =74.48 \text { torr } \quad(\because 1 \mathrm{~atm}=760 \mathrm{torr})
\end{aligned}
$$

Similarly, for toluene,

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{\mathrm{T}}^{0}=\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{1 \times 0.082 \times 293}{819.19}=0.029 \mathrm{~atm} \\
& =22.04 \text { torr } \quad(\because 1 \mathrm{~atm}=760 \text { torr })
\end{aligned}
$$

According to Raoult's law,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{B}}^{0} \mathrm{x}_{\mathrm{B}}=74.48 \mathrm{x}_{\mathrm{B}} \\
& \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{T}}^{0} \mathrm{x}_{\mathrm{T}}=22.04\left(1-\mathrm{x}_{\mathrm{B}}\right)
\end{aligned}
$$

And $\quad P_{M}=P_{B}^{0} x_{B}+P_{T}^{0} x_{T}$
or $\quad 46.0=74.48 \mathrm{x}_{\mathrm{B}}+22.04\left(1-\mathrm{x}_{\mathrm{B}}\right)$

Solving, $\quad x_{B}=0.457$
According to Dalton's law,

$$
\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{M}} \mathrm{x}_{\mathrm{B}}^{\prime} \quad \text { (in vapour phase) }
$$

or mole fraction of benzene in vapour form,

$$
\mathrm{x}_{\mathrm{B}}^{\prime}=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{M}}}=\frac{74.48 \times 0.457}{46.0}=0.74
$$

8. An alkyl halide X, of formula $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}$ on treatment with potassium t-butoxide gives two isomeric alkenes Y and $\mathrm{Z}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$. Both alkenes on hydrogenation give 2, 3-dimethyl butane. Predict the structures of X, Y and Z .
[IIT-1996]
Sol. The alkyl halide X , on dehydrohalogenation gives two isomeric alkenes.

$$
\underset{\mathrm{X}}{\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}} \xrightarrow[\Delta ;-\mathrm{HCl}]{\mathrm{K}-\mathrm{t} \text {-butoxide }} \underset{\mathrm{C}_{6} \mathrm{H}_{12}}{\mathrm{Y}}+
$$

Both, Y and Z have the same molecular formula $\mathrm{C}_{6} \mathrm{H}_{12}\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}\right)$. Since, both Y and Z absorb one mol of H_{2} to give same alkane 2, 3-dimethyl butane, hence they should have the skeleton of this alkane.

2,3-dimethyl butane
The above alkane can be prepared from two alkenes

The hydrogenation of Y and Z is shown below :

Both, Y and Z can be obtained from following alkyl halide :

2-chloro-2,3-dimethyl butane
(X)

(Z) 20%
(Y) 80%

Hence,

Z,

9. A white precipitate was formed slowly when AgNO_{3} was added to compound (A) with molecular formula $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}$. Compound (A) on treatment with hot alcoholic KOH gave a mixture of two isomeric alkenes (B) and (C), having formula $\mathrm{C}_{6} \mathrm{H}_{12}$. The mixture of (B) and (C) on ozonolysis, furnished four compounds (i) $\mathrm{CH}_{3} \mathrm{CHO}$, (ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$,
(iii) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and
(iv) $\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CHO}$. What are the structures of (A) and (C) ?
[IIT-1986]
Sol. It is given that,

$\underset{\text { (B) and (C) }}{\mathrm{C}_{6} \mathrm{H}_{12} \xrightarrow[\text { ((ii) } \mathrm{H}_{2} \mathrm{O} / \mathrm{Zn}]{\text { (i) } \mathrm{O}_{3}} \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}}$

It is observed that during ozonolysis, no loss of carbon takes place, it may be concluded that $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CHO}$ are the products of one alkene (B) and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ are the products of other alkene (say) (C). Thus, from the above we have :

Similarly alkene (C) will be derived as :

Since the compounds (B) and (C) are obtained when (A), $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}$, is dehydrohalogenated by heating it with alcoholic KOH , as follows :

Since the Cl atom in (A) is an aliphatic chlorine, and it is attached to a secondary carbon atom which is adjacent to a tertiary cabon atom and one secondary carbon atom $\left[-\mathrm{CH}_{2}-\underset{\mathrm{Cl}}{\mathrm{CH}} .{\underset{\mathrm{CH}}{3}}_{\mathrm{CH}}-\right]$, it will react slowly with AgNO_{3} to give a white precipitate. Thus,
A,

B,

4-methyl pentene -2

2-methyl pentene-2
10. A white amorphous powder A when heated gives a colourless gas B , which turns lime water milky and the residue C which is yellow when hot but white when cold. The residue C dissolves in dilute HCl and the resulting solution gives a white precipitate on addition of potassium ferrocyanide solution. A dissolves in dilute HCl with the evolution of a gas which is identical in all respects with B. The solution of A as obtained above gives a white precipitate D on addition of excess of $\mathrm{NH}_{4} \mathrm{OH}$ and on passing $\mathrm{H}_{2} \mathrm{~S}$. Another portion of this solution gives initially a white precipitate E on addition of NaOH solution, which dissolves on further addition of the base. Identify the compound A to E.
[IIT-1979]

Sol. The given information is as follows.

From part (a), we conclude that B is CO_{2} as it turns lime water milky :

$$
\mathrm{Ca}\left(\mathrm{OH}_{2}\right)+\mathrm{CO}_{2} \rightarrow \underset{\substack{\text { milky due } \\ \text { to this }}}{\mathrm{CaCO}_{3}}+\mathrm{H}_{2} \mathrm{O}
$$

and C is ZnO as it becomes yellow on heating and is white in cold. Hence, the salt A must be ZnCO_{3}.
From part (b), it is confirmed that C is a salt of zinc (II) which dissolves in dilute HCl and white precipitate obtained after adding $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right.$ is due to $\mathrm{Zn}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$.
From part (c), it is again confirmed that A is ZnCO_{3} as on adding dilute HCl , we get CO_{2} and zinc (II) goes into solution. White precipitate is of ZnS which is precipitated in ammonical medium as its solubility product is not very low. White precipitate E is of $\mathrm{Zn}(\mathrm{OH})_{2}$ which dissolves as zincate, in excess of NaOH . Hence the given information is explained as follows.
(a) $\underset{\text { (A) }}{\mathrm{ZnCO}_{3}} \xrightarrow{\text { heat }} \underset{\text { (B) }}{\mathrm{CO}_{2}}+\underset{\text { (C) }}{\mathrm{ZnO}}$
(b) $\underset{\text { (C) }}{\mathrm{ZnO}} \xrightarrow{\text { dil } \mathrm{HCl}} \underset{\text { solution }}{\mathrm{ZnCl}_{2}} \xrightarrow{\mathrm{~K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}} \underset{\text { White precipitate }}{\mathrm{Zn}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]}$
(c) $\mathrm{ZnCO}_{3} \xrightarrow{\text { dilHCl }} \underset{\text { Solution }}{\mathrm{ZnCl}_{2}}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \mathrm{ZnCl}_{2}+\mathrm{S}^{2-} \rightarrow \underset{(\mathrm{D})}{\mathrm{ZnS} \downarrow+2 \mathrm{Cl}^{-}} \\
& \mathrm{Zn}^{2+}+2 \mathrm{OH}^{-} \rightarrow \underset{\text { (E) }}{\mathrm{Zn}(\mathrm{OH})_{2}}
\end{aligned}
$$

$$
\mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{OH}^{-} \rightarrow \underset{\text { dissolves }}{\mathrm{ZnO}_{2}^{2-}}+2 \mathrm{H}_{2} \mathrm{O}
$$

MATHEMATICS

11. ABC is a triangle such that

$$
\sin (2 A+B)=\sin (C-A)=-\sin (B+2 C)=\frac{1}{2}
$$

If A, B and C are in Arithmetic Progression, determine the values of A, B and C . [IIT-1990]
Sol. Given that in $\triangle \mathrm{ABC}, \mathrm{A}, \mathrm{B}$ and C are in A.P.

$$
\begin{array}{rlrl}
& & \mathrm{A}+\mathrm{C} & =2 \mathrm{~B} \\
\text { also } & \mathrm{A}+\mathrm{B}+\mathrm{C} & =180^{\circ} \\
\Rightarrow & \mathrm{B} & =60^{\circ}
\end{array}
$$

Also given that,
$\sin (2 A+B)=\sin (C-A)=-\sin (B+2 C)=1 / 2$
$\Rightarrow \sin \left(2 \mathrm{~A}+60^{\circ}\right)=\sin (\mathrm{C}-\mathrm{A})=-\sin \left(60^{\circ}+2 \mathrm{C}\right)=\frac{1}{2}$
$\Rightarrow 2 \mathrm{~A}+60^{\circ}=30^{\circ}, 150^{\circ}$
\{neglecting 30°, as not possible\}
$\Rightarrow \quad 2 \mathrm{~A}+60^{\circ}=150^{\circ}$
$\Rightarrow \quad \mathrm{A}=45^{\circ}$
again from (1), $\sin \left(60^{\circ}+2 \mathrm{c}\right)=-1 / 2$
$\Rightarrow \quad 60^{\circ}+2 \mathrm{C}=210^{\circ}, 330^{\circ}$
$\Rightarrow \quad \mathrm{C}=75^{\circ}$ or 135°
Also from $(1) \sin (\mathrm{C}-\mathrm{A})=1 / 2$
$\mathrm{C}-\mathrm{A}=30^{\circ}, 150^{\circ}, 195^{\circ}$
for $\mathrm{A}=45^{\circ}, \mathrm{C}=75^{\circ}$ and $\mathrm{C}=195^{\circ}$ (not possible)
$\therefore \quad \mathrm{C}=75^{\circ}$
Hence, $\quad \mathrm{A}=45^{\circ}, \mathrm{B}=60^{\circ}, \mathrm{C}=75^{\circ}$
12. Show that

$$
\int_{0}^{\pi / 2} f(\sin 2 x) \sin x d x=\sqrt{2} \int_{0}^{\pi / 4} f(\cos 2 x) \cos x d x
$$

[IIT-1990]
Sol. Let, $\mathrm{I}=\int_{0}^{\pi / 2} f(\sin 2 x) \sin x d x$
Then, $\mathrm{I}=\int_{0}^{\pi / 2} f\left\{\sin 2\left(\frac{\pi}{2}-x\right)\right\} \cdot \sin \left(\frac{\pi}{2}-x\right) d x$

$$
\begin{equation*}
=\int_{0}^{\pi / 2} f\{\sin 2 x\} \cdot \cos x d x \tag{2}
\end{equation*}
$$

adding (1) and (2), we get

$$
\begin{aligned}
2 \mathrm{I} & =\int_{0}^{\pi / 2} f(\sin 2 x) \cdot(\sin x+\cos x) d x \\
& =2 \int_{0}^{\pi / 4} f(\sin 2 x) \cdot(\sin x+\cos x) d x \\
& =2 \sqrt{2} \int_{0}^{\pi / 4} f(\sin 2 x) \sin \left(x+\frac{\pi}{4}\right) d x \\
& =2 \sqrt{2} \int_{0}^{\pi / 4} \mathrm{f}\left(\sin 2\left(\frac{\pi}{4}-x\right)\right) \cdot \sin \left(\frac{\pi}{4}-x+\frac{\pi}{4}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sqrt{2} \int_{0}^{\pi / 4} \mathrm{f}(\cos 2 x) \cdot \cos x d x \\
& \therefore \mathrm{I}=\sqrt{2} \int_{0}^{\pi / 4} f(\cos 2 x) \cdot \cos x \mathrm{dx}
\end{aligned}
$$

Hence, $\int_{0}^{\pi / 2} \mathrm{f}(\sin (2 \mathrm{x})) \cdot \sin x d x$

$$
=\sqrt{2} \int_{0}^{\pi / 4} f(\cos 2 x) \cdot \cos x d x
$$

13. From a point A common tangents are drawn to the circle $x^{2}+y^{2}=a^{2} / 2$ and parabola $y^{2}=4 a x$. Find the area of the quadrilateral formed by the common tangents, the chord of contact of the circle and the chord of contact of the parabola.
[IIT-1996]
Sol. Equation of any tangent to the parabola, $y^{2}=4 a x$ is $y=m x+a / m$.
This line will touch the circle $x^{2}+y^{2}=a^{2} / 2$

$$
\begin{aligned}
& \text { If } \quad\left(\frac{a}{m}\right)^{2}=\frac{a^{2}}{2}\left(m^{2}+1\right) \\
& \Rightarrow \quad \frac{1}{m^{2}}=\frac{1}{2}\left(m^{2}+1\right) \Rightarrow 2=m^{4}+m^{2} \\
& \Rightarrow \quad m^{4}+m^{2}-2=0 \\
& \Rightarrow \quad\left(m^{2}-1\right)\left(m^{2}+2\right)=0 \\
& \Rightarrow \quad m^{2}-1=0, m^{2}=-2 \text { (which is not possible). } \\
& \Rightarrow \quad m= \pm 1
\end{aligned}
$$

Therefore, two common tangents are

$$
y=x+a \text { and } y=-x-a
$$

These two intersect at $\mathrm{A}(-a, 0)$
The chord of contact of $\mathrm{A}(-a, 0)$ for the circle $x^{2}+y^{2}=a^{2} / 2$ is
$(-a) x+0 . y=a^{2} / 2 \quad$ or $x=-a / 2$
and chord of contact of $\mathrm{A}(-a, 0)$ for the parabola $y^{2}=4 a x$ is

$$
0 . y=2 a(x-a) \quad \text { or } x=a
$$

Again length of $\mathrm{BC}=2 \mathrm{BK}$

$$
\begin{aligned}
& =2 \sqrt{\mathrm{OB}^{2}-\mathrm{OK}^{2}} \\
& =2 \sqrt{\frac{a^{2}}{2}-\frac{a^{2}}{4}}=2 \sqrt{\frac{a^{2}}{4}}=a
\end{aligned}
$$

and we know that DE is the latus rectum of the parabola so its length is $4 a$.
Thus area of the trapezium

$$
\begin{aligned}
\mathrm{BCDE}=\frac{1}{2}(\mathrm{BC} & +\mathrm{DE})(\mathrm{KL}) \\
& =\frac{1}{2}(a+4 a)\left(\frac{3 a}{2}\right)=\frac{15 a^{2}}{4}
\end{aligned}
$$

14. An unbiased die, with faces numbered $1,2,3,4,5,6$, is thrown n times and the list on n numbers showing up is noted. What is the probability that among the numbers $1,2,3,4,5,6$ only three numbers appear in this list?
[IIT-2001]
Sol. Let us define at onto function F from A : $\left[r_{1}, r_{2} \ldots r_{n}\right]$ to $\mathrm{B}:[1,2,3]$ where $r_{1} r_{2} \ldots . r_{n}$ are the readings of n throws and $1,2,3$ are the numbers that appear in the n throws.
Number of such functions,

$$
\mathrm{M}=\mathrm{N}-[n(1)-n(2)+n(3)]
$$

where $\mathrm{N}=$ total number of functions and
$\mathrm{n}(\mathrm{t})=$ number of function having exactly t elements in the range.
Now, $\quad \mathrm{N}=3^{n}, n(1)=3.2^{n}, n(2)=3, n(3)=0$
$\Rightarrow \quad \mathrm{M}=3^{n}-3.2^{n}+3$
Hence the total number of favourable cases

$$
\begin{aligned}
&=\left(3^{n}-3.2^{n}+3\right) .{ }^{6} \mathrm{C}_{3} \\
& \Rightarrow \text { required probability }=\frac{\left(3^{n}-3.2^{n}+3\right) \times{ }^{6} C_{3}}{6^{n}}
\end{aligned}
$$

15. Determine the equation of the curve passing through the origin in the from $y=f(x)$, which satisfies the differential equation $\frac{d y}{d x}=\sin (10 x+6 y)$ [IIT-1996]
Sol. $\frac{d y}{d x}=\sin (10 x+6 y)$

$$
\begin{aligned}
& \text { Let } 10 x+6 y=t \\
& \Rightarrow \quad 10+6 \frac{d y}{d x}=\left(\frac{d t}{d x}\right) \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{1}{6}\left(\frac{d t}{d x}-10\right)
\end{aligned}
$$

Now the given differential equation becomes

$$
\begin{array}{ll}
& \sin t=\frac{1}{6}\left(\frac{d t}{d x}-10\right) \\
\Rightarrow & 6 \sin t=\frac{d t}{d x}-10 \\
\Rightarrow & \frac{d t}{d x}=6 \sin t+10 \\
\Rightarrow & \frac{d t}{6 \sin t+10}=d x \text { apply variable separable }
\end{array}
$$

Integrating both the sides, we get

$$
\begin{array}{ll}
& \int \frac{d t}{6 \sin t+10}=\int d x \\
\Rightarrow & \frac{1}{2} \int \frac{d t}{3 \sin t+5}=x+c \tag{2}\\
\text { Let } & \mathrm{I}_{1}=\int \frac{d t}{3 \sin t+5}
\end{array}
$$

Put $\tan t / 2=\underline{\mathbf{u}}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} \sec ^{2} t / 2 d t=d u \\
& \Rightarrow \quad d t=\frac{2 d u}{\sec ^{2} t / 2} \\
& \Rightarrow \quad d t=\frac{2 d u}{1+\tan ^{2} t / 2} \\
& \Rightarrow \quad d t=\frac{2 d u}{1+u^{2}}
\end{aligned}
$$

$$
\text { Also, } \quad \mathrm{I}_{1}=\int \frac{d t}{3 \sin t+5}=\int \frac{d t}{3\left(\frac{2 \tan t / 2}{1+\tan ^{2} t / 2}\right)+5}
$$

$$
=\int \frac{\left(1+\tan ^{2} t / 2\right) d t}{\left(6 \tan \frac{t}{2}+5+5 \tan ^{2} \frac{t}{2}\right)}
$$

$$
=\int \frac{2\left(1+u^{2}\right) d u}{\left(1+u^{2}\right)\left(5 u^{2}+6 u+5\right)}
$$

$$
=\frac{2}{5} \int \frac{d u}{u^{2}+(6 / 5) u+1}
$$

$$
=\frac{2}{5} \int \frac{d u}{u^{2}+\frac{6}{5} u+\frac{9}{25}-\frac{9}{25}+1}
$$

$$
=\frac{2}{5} \int \frac{d u}{\left(u+\frac{3}{5}\right)^{2}+\frac{16}{25}}
$$

$$
=\frac{2}{5} \int \frac{d u}{\left(u+\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}}
$$

$$
=\frac{2}{5} \cdot \frac{5}{4} \tan ^{-1}\left(\frac{u+3 / 5}{4 / 5}\right)
$$

$$
=\frac{1}{2} \tan ^{-1}\left[\frac{5 u+3}{4}\right]
$$

$$
=\frac{1}{2} \tan ^{-1}\left[\frac{5 \tan t / 2+3}{4}\right]
$$

Putting this in (2)
Now $\quad \frac{1}{2} \mathrm{I}_{1}=x+c$
$\Rightarrow \frac{1}{4} \tan ^{-1}\left[\frac{5 \tan \frac{t}{2}+3}{4}\right]=x+c$

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left[\frac{5 \tan \frac{t}{2}+3}{4}\right]=4 x+4 c \\
& \Rightarrow \quad \frac{1}{4}[5 \tan (5 x+3 y)+3]=\tan (4 x+4 c) \\
& \Rightarrow 5 \tan (5 x+3 y)+3=4 \tan (4 x+4 c) \\
& \text { When } x=0, \mathrm{y}=0 \text { we get } \\
& \quad 5 \tan 0+3=4 \tan (4 c) \\
& \Rightarrow \quad \frac{3}{4}=\tan 4 c \\
& \Rightarrow \quad 4 c=\tan ^{-1} \frac{3}{4}
\end{aligned}
$$

Then, $5 \tan (5 x+3 y)+3=4 \tan \left(4 x+\tan ^{-1} 3 / 4\right)$

$$
\Rightarrow \quad \tan (5 x+3 y)=\frac{4}{5} \tan \left(4 x+\tan ^{-1} 3 / 4\right)-\frac{3}{5}
$$

$$
\Rightarrow \quad 5 x+3 y=\tan ^{-1}\left[\frac{4}{5}\left\{\tan \left(4 x+\tan ^{-1} 3 / 4\right\}-\frac{3}{5}\right]\right.
$$

$$
\Rightarrow \quad 3 y=\tan ^{-1}\left[\frac{4}{5}\left\{\tan \left(4 x+\tan ^{-1} 3 / 4\right\}-\frac{3}{5}\right]-5 x\right.
$$

$$
\Rightarrow \quad y=\frac{1}{3} \tan ^{-1}\left[\frac{4}{5}\left\{\tan \left(4 x+\tan ^{-1} 3 / 4\right\}-\frac{3}{5}\right]-\frac{5 x}{3}\right.
$$

Abundances of the Elements in the
Earth's Crust

Given the abundance of oxygen and silicon in the crust, it should not be surprising that the most \| abundant minerals in the earth's crust are the || silicates. Although the Earth's material must have had || the same composition as the Sun originally, the present composition of the Sun is quite different. The elemental composition of the human body and life in general is quite different.
\| These general element abundances are reflected in \| the composition of igneous rocks.

Physics Challenging Prablems

This section is designed to give IIT JEE aspirants a thorough grinding \& exposure to variety of possible twists and turns of problems in physics that would be very helpful in facing IIT JEE. Each and every problem is well thought of in order to strengthen the concepts and we hope that this section would prove a rich resource for practicing challenging problems and enhancing the preparation level of IIT JEE aspirants.

Solutions will be published in next issue

By : Dev Sharma
Director Academics, Jodhpur Branch

1. The temperature drops through a two layer wall by $600^{\circ} \mathrm{C}$. Each layer is of equal of cross section. Which of the following actions will result in lowering the temperature θ of the interface

(A) By increasing the thermal conductivity of outer layer
(B) By increasing the thermal conductivity of inner layer
(C) By increasing thickness of outer layer
(D) By increasing thickness of inner layer
2. ' n ' moles of an ideal monoatomic gas undergoes a process given by $T=K V^{3}$. If the temperature of the gas changes from T_{0} to $3 \mathrm{~T}_{0}$ then-
(A) work done by the gas is $2 / 3 \mathrm{nRT}_{0}$
(B) work done by the gas is $1 / 3 \mathrm{nRT}_{0}$
(C) molar specific heat for this process is $11 / 6 \mathrm{nRT}_{0}$
(D) Heat supplied is $11 / 6 \mathrm{nRT}_{0}$
3. An ideal gas having molar specific heat of constant volume C_{V}. If is undergoing a process where temperature is varying as $\mathrm{T}=\mathrm{T}_{0} \mathrm{e}^{\alpha \mathrm{V}}$ where α is constant and " V ' is the volume occupied by the gas. The molar specific heat of the gas for the given process as a function of volume is given by-
(A) $\mathrm{C}_{\mathrm{V}}+\frac{\alpha \mathrm{R}}{\mathrm{V}}$
(B) $\mathrm{C}_{\mathrm{V}}+\frac{\mathrm{R}}{\alpha \mathrm{V}}$
(C) $\mathrm{C}_{\mathrm{V}}+\frac{2 \alpha \mathrm{R}}{\mathrm{V}}$
(D) $\mathrm{C}_{\mathrm{V}}+\frac{\mathrm{R}}{2 \alpha \mathrm{~V}}$

Passage \# (Q. No. 4 to Q. No. 6)

Newton's law of cooling says for small temperature difference between a body and surrounding. The rate of cooling of the body is directly proportional to the temperature difference and surface area exposed. We can write $\frac{d T}{d t}=-b A\left(T-T_{0}\right)$.
The constant " b " depends on the nature of the surface involved and surrounding conditions. " T " is the temperature of object and T_{0} is that of surrounding.

A metal block of heat capacity $100 \mathrm{~J}^{\circ} \mathrm{C}$ placed in a room at $30^{\circ} \mathrm{C}$ is heated electrically. The heater is switched off when the temperature of block reaches $50^{\circ} \mathrm{C}$. The temperature of block rises at the rate $2^{\circ} \mathrm{C}$ per second just after the heater is switched on and falls at the rate $0.2^{\circ} \mathrm{C} / \mathrm{sec}$ just after heater is switched off. Assume Newton's law of cooling hold.
4. The power radiated by the block just after the heater is turned off -
(A) 10 W
(B) 20 W
(C) 40 W
(D) None
5. What will be the power radiated by the block when the temperature of block becomes $40^{\circ} \mathrm{C}$?
(A) 10 W
(B) 20 W
(C) 40 W
(D) 5 W
6. Assuming that the power radiated at $40^{\circ} \mathrm{C}$ represents the average value of is the heating process. The time for which the heater was kept on-
(A) 5.2 sec
(B) 10.5 sec
(C) 21 sec
(D) 15 sec
7. The electric field on two sides of a large charged plate is shown in figure. The charge density on the plate in S.I. units is given by (ε_{0} is the permittivity
 of free space in S.I. units)
(A) $2 \varepsilon_{0}$
(B) $4 \varepsilon_{0}$
(C) $10 \varepsilon_{0}$
(D) zero
8. AB is a resistanceless conducting rod which forms a diameter of a conducting ring of radius r rotating in a uniform magnetic field B as shown. The resistance R_{1} and R_{2} do not rotate. Then current through the resistor R_{1} is-

(A) $\frac{B \omega r^{2}}{2 R_{1}}$
(B) $\frac{B \omega r^{2}}{2 R_{2}}$
(C) $\frac{B \omega r^{2}}{2 R_{1} R_{2}}\left(R_{1}+R_{2}\right)$
(D) $\frac{B \omega r^{2}}{2\left(R_{1}+R_{2}\right)}$

Solution Physics Challenging Problems

Ouestions were Published in June Issue

1. During steady state $\mathrm{Q}_{\max }=4 \mathrm{C}(\mathrm{C} \rightarrow \mu \mathrm{F})$ at $\mathrm{t}=\mathrm{t}_{1}$ after charging,
$\mathrm{q}=\mathrm{Q}_{\text {max }}\left[1-\mathrm{e}^{-\mathrm{t}_{1} / \mathrm{RC}}\right]$
$\mathrm{q}=4 \mathrm{C}\left[1-\mathrm{e}^{-\mathrm{t}_{1} / \mathrm{RC}}\right]$
During discharging
$3=(4 C) \mathrm{e}^{-\mathrm{t}_{1} / \mathrm{RC}}$
Solving (i) and (ii) $\mathrm{C}=3 \mu \mathrm{~F}$
Option [B] is correct
2. At any time $\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=\mathrm{E}$

$\int L d i=\int E d t$
$\mathrm{Li}=\mathrm{Et}$
$\mathrm{i} \propto \mathrm{t}$
Option [B] is correct
3. It is possible only if after connecting voltmeter across 3Ω and 8Ω resistance it becomes balanced wheat stone Bridge.
So let resistance of voltmeter be $r \Omega$.
$\frac{2}{5}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$ where $\mathrm{R}_{1}=\frac{3 \mathrm{r}}{\mathrm{r}+3}, \mathrm{R}_{2}=\frac{8 \mathrm{r}}{\mathrm{r}+8}$
Solving we get $r=72 \Omega$

Option [A] is correct

4. $\mathrm{A} \rightarrow \mathrm{P}, \mathrm{S}, \mathrm{T} ; \mathrm{B} \rightarrow \mathrm{Q}, \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{P}, \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{T}$

Hint: from lenz's law.
5. Option [A] is correct
6. $\quad \operatorname{Irms} 1=\mathrm{Irms} 2$

$$
\Rightarrow \frac{1}{(\omega C)^{2}+R^{2}}=\frac{1}{\left(\frac{1}{\omega C}\right)^{2}+R^{2}}
$$

$$
\omega=\frac{1}{\mathrm{LC}} \Rightarrow \mathrm{f}=\frac{1}{2 \pi} \sqrt{\mathrm{LC}}
$$

Option [D] is correct

7. Voltage is same for both in capacitor current leads voltage by $\cos ^{-1} \frac{\mathrm{R}}{\sqrt{\mathrm{X}_{\mathrm{C}}^{2}+\mathrm{R}^{2}}}=\phi$, in inductor current lags voltage by $\cos ^{-1} \frac{\mathrm{R}}{\sqrt{\mathrm{X}_{\mathrm{C}}^{2}+\mathrm{R}^{2}}}=\phi_{2}$.
$\phi_{1}+\phi_{2}=90 \Rightarrow \cos \left(\phi_{1}+\phi_{2}\right)=0$
$\tan \phi_{1}+\tan \phi_{2}=1$
$\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}} \times \frac{\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}=1 \Rightarrow \mathrm{~L}=\mathrm{CR}^{2}$
Option [C] is correct
8. [0030]
$\mathrm{V}_{\mathrm{AD}}=40 \mathrm{~V}$ (given)
Now, ir +3 ir $=40 \mathrm{~V}$
ir $=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OD}}=3 \mathrm{ir}=30 \mathrm{~V}$

WHATS A LIGHT YEAR?

A light year is the total distance travelled by a \| beam of light in one year. A beam of light can
|| travel at up to $300,000 \mathrm{~km} / \mathrm{sec}$ and the approximate
\| distance covered in a year works out to be
\| 9,470,000,000,000 km
\| $(1$ light year $=9.47 \times 1012 \mathrm{~km})$.
|

PHYSICS

Students' Farum

Expert's Salution far Question asked by IIT-JEE Aspirants

1. In the arrangement shown in figure ball and block have the same mass $m=1 \mathrm{~kg}$ each, $\theta=60^{\circ}$ and length $\ell=2.50 \mathrm{~m}$. Co-efficient of friction between block and floor is 0.5 . When the ball is released from the position shown in the figure, it collides with the block and the block stops after moving a distance 2.50 m .

Find coefficient of restitution for collision between the ball and the block. ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
Sol. When ball is released, it moves along a vertical circle with centre at A. Kinetic energy of ball just before collision is equal to loss of its potential energy from point of release to the point of collision. Therefore, velocity v_{1} of ball, just before collision, is given by $\frac{1}{2} \mathrm{mv}_{1}{ }^{2}=\mathrm{mg}(\ell-\ell \cos \theta) \quad \therefore \mathrm{v}_{1}=5 \mathrm{~ms}^{-1}$.
After collision block starts to move towards right. But it is retarded by force of friction and ultimately it comes to rest.
According to law of conservation of energy,
kinetic energy of block just after collision = work done by it against friction.
Therefore, its velocity v_{2}, just after collision is given by $\frac{1}{2} \mathrm{mv}_{2}{ }^{2}=\mu \mathrm{mgs}$
where $\mu=0.5$ and $\mathrm{s}=2.50 \mathrm{~m}$
$\therefore \quad \mathrm{V}_{2}=5 \mathrm{~ms}^{-1}$
co-efficient of restitution, $e=-\frac{v_{2}-v_{1}}{u_{2}-u_{1}}$
where $\mathrm{u}_{2}=0, \mathrm{u}_{1}=5 \mathrm{~ms}^{-1}$ and $\mathrm{v}_{2}=5 \mathrm{~ms}^{-1}$
$\therefore \quad e=-\frac{5-\mathrm{v}_{1}}{0-5}$
or $\quad 5-\mathrm{v}_{1}=5 \mathrm{e} \quad$ or $\mathrm{v}_{1}=(5-5 \mathrm{e})$
Applying law of conservation of momentum,

$$
\begin{aligned}
& \mathrm{mu}_{1}+\mathrm{nu}_{2}=\mathrm{mv}_{1}+\mathrm{mv}_{2} \\
& \text { or } 5 \mathrm{~m}+(\mathrm{m} \times 0)=\mathrm{mv}_{1}+5 \mathrm{~m} \quad \text { or } \quad \mathrm{v}_{1}=0
\end{aligned}
$$

$$
\text { Substituting in equation (i) } \quad \mathrm{e}=1 \quad \text { Ans. }
$$

2. A block A of mass $m=5 \mathrm{~kg}$ is attached with a spring having force constant $\mathrm{K}=2000 \mathrm{Nm}^{-1}$. The other end of the spring is fixed to a rough plane, inclined at 37° with horizontal and having coefficient of friction $\mu=0.25$. Block A is gently placed on the plane such that the spring has no tension. Then block A is released slowly.

(i) Calculate elongation of the spring when equilibrium is achieved.
Now an inextensible thread is connected with block A and passed below pulley C and over pulley D , as shown in figure. Other end of the thread is connected with another block B of mass 3 kg . Block B is resting over a table and thread is loose.
If the table collapses suddenly and B falls freely through $80 / 9 \mathrm{~cm}$ the thread becomes taut, calculate
(ii) combined speed of blocks at that instant and
(iii) maximum elongation of spring in process of motion ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
Sol. Since the block is released slowly, therefore it starts to slide down the plane till equilibrium of forces is achieved.

Let at that instant elongation of spring be x_{0}, then tension in it is $\mathrm{T}_{0}=\mathrm{Kx}_{0}=2000 \mathrm{x}_{0}$.
Considering free body diagram of block, figure
$\mathrm{N}=\mathrm{mg} \cos 37^{\circ}=40$ newton
$K x_{0}+\mu \mathrm{N}=\mathrm{mg} \sin 37^{\circ}$
From equation (i) and (ii)
$\mathrm{x}_{0}=0.01 \mathrm{~m}=1 \mathrm{~cm}$
Ans. (i)
When table collapses, first block B falls freely under gravity through height $80 / 9 \mathrm{~cm}$. Therefore, its speed just before the string becomes taut is
$\mathrm{v}_{0}=\sqrt{2 \mathrm{~g} \times\left(\frac{0.80}{9}\right)}=4 / 3 \mathrm{~ms}^{-1}$.
Now block A is jerked into motion and a large tension (for a very small time interval) is developed in string due to which both the blocks A and B experience numerically equal impulses. Let its magnitude be J and let the combined speed of blocks be v,
Then for block A $\mathrm{J}=5 \mathrm{v}$
For block B $\quad 3 \mathrm{v}_{0}-\mathrm{J}=3 \mathrm{v}$
From equation (iii) and (iv)

$$
\begin{equation*}
\mathrm{v}=0.5 \mathrm{~ms}^{-1} \quad \text { Ans.(ii) } \tag{iv}
\end{equation*}
$$

At the instant of maximum elongation of spring, blocks are momentarily at rest.
Let distance moved by the blocks be x from the instant when block A was jerked into motion to the instant of maximum elongation of the spring.
According to law of conservation of energy, loss of potential energy of $A+$ loss of potential energy of $B+$ loss of kinetic energy of blocks $=$ increase in energy stored in spring + work done by the block A against friction

$$
\begin{aligned}
& \therefore=5 \cdot \mathrm{~g}\left(\mathrm{x} \sin 37^{\circ}\right)+3 \mathrm{gx}+\left\{\frac{1}{2} \times\left(5 \mathrm{v}^{2}\right)+\frac{1}{2} \times\left(3 \mathrm{v}^{2}\right)\right\} \\
& \quad=\left\{\frac{1}{2} \mathrm{~K}\left(\mathrm{x}_{0}+\mathrm{x}\right)^{2}-\frac{1}{2} \mathrm{Kx}_{0}^{2}\right\}+\mu \mathrm{Nx} \\
& \therefore \mathrm{x}=0.05 \mathrm{~m} \quad \text { or } \quad 5 \mathrm{~cm} \\
& \therefore \text { maximum elongation of spring }=\text { Its initial } \\
& \text { elongation }\left(\mathrm{x}_{0}\right)+\text { Further elongation }(\mathrm{x})
\end{aligned}
$$

$$
\begin{equation*}
=6 \mathrm{~cm} \tag{iii}
\end{equation*}
$$

3. Three capacitors $\mathrm{C}_{1}=3 \mu \mathrm{~F}, \mathrm{C}_{2}=6 \mu \mathrm{~F}$ and $\mathrm{C}_{3}=6 \mu \mathrm{~F}$ have equal charge $\mathrm{q}=30 \mu \mathrm{C}$ each. C_{1} and C_{2} are connected in series as shown in figure. If C_{3} is connected across the series combination by connecting A with C and B with D and if resistance of connecting wires is $\mathrm{R}=10 \Omega$, calculate initial current in the circuit and also heat generated.

Sol. Let initial current be I_{0}. Then at initial moment the circuit will be as shown in figure (i)

Fig. (i)
Applying Kirchhoff's voltage law on the circuit
$\frac{\mathrm{q}}{\mathrm{C}_{1}}+\frac{\mathrm{q}}{\mathrm{C}_{2}}-\frac{\mathrm{q}}{\mathrm{C}_{3}}-\mathrm{I}_{0} \mathrm{R}=0$
$\therefore \mathrm{I}_{0}=1 \mathrm{amp}$
Ans. (i)
Heat generated in the circuit is equal to the loss of energy stored in capacitors.

$$
\text { initially energy stored, } \begin{aligned}
\mathrm{U}_{1} & =\frac{q^{2}}{2 \mathrm{C}_{1}}+\frac{q^{2}}{2 \mathrm{C}_{2}}+\frac{q^{2}}{2 \mathrm{C}_{3}} \\
& =300 \mu \mathrm{~J}
\end{aligned}
$$

Let a charge $\Delta \mathrm{q}$ flows through the circuit till steady state is reached again.
Then charges on C_{1}, C_{2} and C_{3} become
$\mathrm{q}_{1}=(\mathrm{q}-\Delta \mathrm{q}), \mathrm{q}_{2}=(\mathrm{q}-\Delta \mathrm{q})$ and $\mathrm{q}_{3}=(\mathrm{q}+\Delta \mathrm{q})$
respectively as shown in figure. (ii)

Fig. (ii)
Applying Kirchhoff's voltage law in final state
$\frac{(q-\Delta q)}{C_{1}}+\frac{(q-\Delta q)}{C_{2}}-\frac{(q+\Delta q)}{C_{3}}=0$
$\therefore \Delta \mathrm{q}=15 \mu \mathrm{C}$
Therefore, finally energy stored in capacitors is
$\mathrm{U}_{2}=\frac{(\mathrm{q}-\Delta \mathrm{q})^{2}}{2 \mathrm{C}_{1}}+\frac{(\mathrm{q}-\Delta \mathrm{q})^{2}}{2 \mathrm{C}_{2}}+\frac{(\mathrm{q}+\Delta \mathrm{q})^{2}}{2 \mathrm{C}_{3}}=225 \mu \mathrm{~J}$
\therefore Heat generated $=\mathrm{U}_{1}-\mathrm{U}_{2}=75 \mu \mathrm{~J}$
Ans.
4. A variable capacitor is adjusted in position of its lowest capacitance C_{0} and is connected with a source of constant voltage V for a long time. Resistance of connecting wires is R. At $t=0$, its capacitance starts to increase so that a constant current I starts to flow through the circuit. Calculate at time t
(i) power supplied by the source,
(ii) thermal power generated in the connecting wire and
(ii) rate of increase of electrostatic energy stored in capacitor.
(iv) What do you infer from above three results?

Sol. Since, Voltage V of the source is constant and circuit draws a constant current I from it, therefore, power supplied by the source is $\mathrm{P}=\mathrm{VI}$

Ans. (i)
Thermal power generated in connecting wires,

$$
\mathrm{H}=\mathrm{I}^{2} \mathrm{R}
$$

Ans. (ii)
Since, initial capacitance of the capacitor was equal to C_{0} and it was connected with the source for long time, therefore, initial charge on capacitor was equal to
$\mathrm{q}_{0}=\mathrm{C}_{0} \mathrm{~V}$
Since, a constant current I starts to flow at $t=0$, therefore, at time t , charge on capacitor becomes equal to $\mathrm{q}=\left(\mathrm{C}_{0} \mathrm{~V}+\mathrm{It}\right)$
At time t, circuit will be as shown in figure

Potential difference across the capacitor is
$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=(\mathrm{V}-\mathrm{IR})$
\therefore Electrostatic energy in capacitor at this instant is

$$
\mathrm{U}=\frac{1}{2} \mathrm{qV}_{\mathrm{C}}
$$

Rate of increase of electrostatic energy $=\frac{d U}{d t}$

$$
\begin{aligned}
& =\frac{1}{2} \frac{\mathrm{dq}}{\mathrm{dt}} \mathrm{~V}_{\mathrm{C}}=\frac{1}{2}(\mathrm{~V}-\mathrm{IR}) \mathrm{I} \\
& =\frac{1}{2}\left(\mathrm{VI}-\mathrm{I}^{2} \mathrm{R}\right)
\end{aligned}
$$

Ans. (iii)
But power acting across the capacitor at this instant is $P_{C}=P-H=\left(V I-I^{2} R\right)$ while rate or increase of electrostatic energy in capacitor is half of it.
In fact, a force of attraction exists between surfaces of the capacitor. When these surfaces move towards each other capacitance increases. Hence, remaining part of the power acting across capacitor is used to increase kinetic energy of surfaces (plates) of the capacitor.

Ans. (iv)
5. A Solid non-conducting hemisphere of radius R has a uniformly distributed positive charge of density ρ per unit volume. A negatively charged particle having charge q is transferred from centre of its base to infinity. Calculate work performed in the process.
Di-electric constant of material of hemisphere is unity

Sol. When negative charge q is displaced from centre of base to infinity, its electrical potential energy increases. Work is to be performed to increase this energy. To calculate initial potential energy of the particle, first a thin hemispherical shell of radius x and radial thickness dx is considered as shown in Figure

Volume of material of the shell $=2 \pi \mathrm{x}^{2} . \mathrm{dx}$
\therefore Charge on shell is $d Q=\rho\left(2 \pi x^{2} d x\right)$
Since, every element of this shell is at a constant distance x from centre of curvature, therefore, potential energy of the particle, due to charge of the shell considered is
$\mathrm{d} \mathrm{U}=\frac{1}{4 \pi \varepsilon_{0}} \frac{(-\mathrm{q})(\mathrm{dQ})}{\mathrm{x}}=-\frac{\mathrm{q} \rho}{2 \varepsilon_{0}} \mathrm{xdx}$
or total initial potential energy of particle,
$\mathrm{U}_{0}=-\frac{\mathrm{q} \rho}{2 \varepsilon_{0}} \int_{\mathrm{x}=0}^{\mathrm{x}=\mathrm{R}} \mathrm{R} . \mathrm{dx}=-\frac{\mathrm{q} \rho \mathrm{R}^{2}}{4 \varepsilon_{0}}$
When particle reaches infinity, its potential energy U becomes equal to zero.
\therefore Work done $=$ Increase in potential energy

$$
=\mathrm{U}-\mathrm{U}_{0}=\frac{\mathrm{q} \rho \mathrm{R}^{2}}{4 \varepsilon_{0}}
$$

Ans.

- 100 years ago: The first virus was found in both plants and animals.
- 90 years ago: The Grand Canyon became a national monument \& Cellophane is invented.
- 80 years ago: The food mixer and the domestic refrigerator were invented.
- 70 years ago: The teletype and PVC (polyvinylchloride) were invented.
- 60 years ago: Otto Hahn discovered nuclear fission by splitting uranium, Teflon was I invented.
- 50 years ago: Velcro was invented.
- 40 years ago: An all-female population of lizards was discovered in Armenia.
- 30 years ago: The computer mouse was invented.
- 20 years ago: First test-tube baby born in England, Pluto's moon, Charon, discovered.
- 10 years ago: First patent for a geneticallyengineered mouse was issued to Harvard Medical School.

Physics Fundamental For IIT-Jee

Capacitor-1

KEY CONCEPTS \& PROBLEM SOLVING STRATEGY

Capacitance :

Whenever charge is given to a conductor of any shape its potential increases. The more the charge (Q) given to the conductor the more is its potential (V)
i.e. $\quad \mathrm{Q} \propto \mathrm{V}$
$\Rightarrow \quad \mathrm{Q}=\mathrm{CV}$
where C is constant of proportionality called capacitance of the conductor $\mathrm{C}=\mathrm{Q} / \mathrm{V}, \mathrm{C}=\mathrm{Q}$
SI unit of capacitance is farad (F) and $1 \mathrm{~F}=1$ coulomb/volt ($1 \mathrm{CV}^{-1}$)
Energy stored in a charged capacitor :
$\mathrm{W}=\frac{1}{2} \mathrm{CV}_{0}^{2}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}=\frac{1}{2} \mathrm{QV}_{0}$

Capacitance of an isolated sphere :

Let a conducting sphere of radius a acquire a potential V when a charge Q is given to $i t$. The potential acquired by the sphere is

$$
\mathrm{V}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{a}} \Rightarrow \mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}}=4 \pi \varepsilon_{0} \mathrm{a}
$$

Charge sharing Between two charged conductors :

$\mathrm{q}_{1}=\mathrm{C}_{1} \mathrm{~V}_{1}$
(Initially)

$\mathrm{q}_{2}=\mathrm{C}_{2} \mathrm{~V}_{2}$

$q^{\prime}{ }_{1}=C_{1} V$

$q^{\prime}{ }_{2}=C_{2} V$
(Finally)
$\mathrm{V}=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
There is always a loss in energy during the sharing process as some energy gets converted to heat.
Loss $=-\Delta \mathrm{U}=\frac{1}{2}\left(\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}\right)\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2}$

Capacitor or Condenser :

An arrangement which has capability of collecting (and storing) charge and whose capacitance can be varied is called a capacitor (or condenser)
The capacitance of a capacitor depends.
(a) directly on the size of the conductors of the capacitor.
(b) directly on the dielectric constant K of the medium between the conductors.
(c) inversely on the distance of separation between the conductor.

Principle of a condenser :

Consider a conducting plate A which is given a charge Q such that its potential rises to V . Then

$$
\mathrm{C}=\mathrm{Q} / \mathrm{V}
$$

Let us place another identical conducting plate B parallel to it such that charge is induced on plate B (as shown in figure).

If V_{-}is the potential at A due to induced negative charge on B and V_{+}is the potential at A due to induced positive charge on B, then

$$
\mathrm{C}^{\prime}=\frac{\mathrm{Q}}{\mathrm{~V}^{\prime}}=\frac{\mathrm{Q}}{\mathrm{~V}+\mathrm{V}_{+}-\mathrm{V}_{-}}
$$

Since $\mathrm{V}^{\prime}<\mathrm{V}$ (as the induced negative charge lies closer to the plate A in comparison to induced positive charge).

$$
\Rightarrow \mathrm{C}^{\prime}>\mathrm{C}
$$

Further, if B is earthed from the outer side (see figure) then $\mathrm{V}^{\mathrm{n}}=\mathrm{V}-\mathrm{V}_{-}$as the entire positive charge flows to the earth. So

$$
\mathrm{C}^{\prime \prime}=\frac{\mathrm{Q}}{\mathrm{~V}^{\mathrm{n}}}=\frac{\mathrm{Q}}{\mathrm{~V}-\mathrm{V}_{-}} \Rightarrow \mathrm{C}^{\mathrm{n}} \gg \mathrm{C}
$$

So, if an identical earthed conductor is placed in the viscinty of a charged conductor then the capacitance of the charged conductor increases appreciably. This is the principle of a parallel plate capacitor.

Parallel Plate Capacitor :

It consists of two metallic plates A and B each of area A at separation d. Plate A is positively charged and plate B is earthed. If K is the dielectric constant of the material medium and E is the field that exists between the two plates, then

$$
\begin{aligned}
& \mathrm{E}=\frac{\sigma}{\varepsilon}=\frac{\sigma}{\mathrm{K} \varepsilon_{0}} \quad\left\{\because \mathrm{E}=\frac{\mathrm{V}}{\mathrm{~d}} \text { and } \sigma=\frac{\mathrm{q}}{\mathrm{~A}}\right\} \\
& \Rightarrow \frac{\mathrm{V}}{\mathrm{~d}}=\frac{\mathrm{q}}{\mathrm{~K} \varepsilon_{0} \mathrm{~A}} \\
& \Rightarrow \mathrm{C}=\frac{\mathrm{q}}{\mathrm{~V}}=\frac{\mathrm{K} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}
\end{aligned}
$$

If medium between the plates is air or vacuum, then $\mathrm{K}=1$
$\Rightarrow \mathrm{C}_{0}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$

Special Case I :

When the space between the parallel plate capacitor is partly filled with a dielectric of thickness $t(<d)$
If no slab is introduced between the plates of the capacitor, then a field E_{0} given by $\mathrm{E}_{0}=\frac{\sigma}{\varepsilon_{0}}$, exists in a space d.

On inserting the slab of thickness t, a field $E=\frac{E_{0}}{K}$ exists inside the slab of thickness t and a field E_{0} exists in remaining space ($\mathrm{d}-\mathrm{t}$). If V is total potential then

$$
\begin{aligned}
& V=E_{0}(d-t)+E t \\
& \Rightarrow C=\frac{q}{V}=\frac{\varepsilon_{0} A}{d-t\left(1-\frac{1}{K}\right)}
\end{aligned}
$$

Special Case II :

When the space between the parallel plate capacitor is partly filled by a conducting slab of thickness $\mathrm{t}(<\mathrm{d})$.
It no conducting slab is introduced between the plates, then a field $\mathrm{E}_{0}=\frac{\sigma}{\varepsilon_{0}}$ exists in a space d. If C_{0} be the capacitance (without the introduction of conducting slab), then $\mathrm{C}_{0}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$

On inserting the slab, field inside it is zero and so a field $\mathrm{E}_{0}=\frac{\sigma}{\varepsilon_{0}}$ now exists in a space $(\mathrm{d}-\mathrm{t})$
$\Rightarrow \mathrm{V}=\mathrm{E}_{0}(\mathrm{~d}-\mathrm{t})$
$\Rightarrow \mathrm{V}=\frac{\sigma}{\varepsilon_{0}}(\mathrm{~d}-\mathrm{t})$
$\Rightarrow \mathrm{V}=\frac{\mathrm{q}}{\mathrm{A} \varepsilon_{0}}(\mathrm{~d}-\mathrm{t})$
$\Rightarrow \mathrm{C}=\frac{\mathrm{q}}{\mathrm{V}}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}-\mathrm{t}}$
$\Rightarrow \mathrm{C}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}\left(1-\frac{\mathrm{t}}{\mathrm{dt}}\right)}$
$\Rightarrow \mathrm{C}=\frac{\mathrm{C}_{0}}{\left(1-\frac{\mathrm{t}}{\mathrm{d}}\right)}$
Since $d-t<d$
$\Rightarrow C>C_{0}$
i.e. Capacitance increases on insertion of conducting slab between the plates of capacitor.

Charge induced on a dielectric :

Resultant dielectric field within the plates is

$$
\mathrm{E}=\mathrm{E}_{0}-\mathrm{E}_{\mathrm{p}}
$$

$\Rightarrow \mathrm{E}=\frac{1}{\varepsilon_{0}}\left(\sigma-\sigma_{\mathrm{p}}\right)$
Also $\mathrm{E}=\frac{\sigma}{\mathrm{K} \varepsilon_{0}}$
Compare (1) and (2), we get

$$
\begin{aligned}
& \frac{1}{\varepsilon_{0}}\left(\sigma-\sigma_{\mathrm{p}}\right)=\frac{\sigma}{\mathrm{K} \varepsilon_{0}} \\
\Rightarrow & \sigma_{\mathrm{p}}=\sigma\left(1-\frac{1}{\mathrm{~K}}\right) \\
\Rightarrow & \frac{\mathrm{q}_{\mathrm{p}}}{\mathrm{~A}}=\frac{\mathrm{q}}{\mathrm{~A}}\left(1-\frac{1}{\mathrm{~K}}\right) \\
\Rightarrow & \mathrm{q}_{\mathrm{p}}=\mathrm{q}\left(1-\frac{1}{\mathrm{~K}}\right)
\end{aligned}
$$

Spherical capacitor :

let C_{1} be the capacitance in between the two conductors and C_{2} be capacitance out side both.

To find C_{1} :

Imagine the outer surface of B to be earthed. Then $-q$ is the charge induced on the inner surface of B.
If V is the potential difference between the two surfaces, then

$$
\begin{align*}
\mathrm{V} & =\frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{Ka}}+\frac{-\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{~Kb}} \\
\Rightarrow \mathrm{~V} & =\frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{~K}}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right) \\
\Rightarrow \mathrm{C} & =\frac{\mathrm{q}}{\mathrm{~V}}=4 \pi \varepsilon_{0} \mathrm{~K}\left(\frac{\mathrm{ab}}{\mathrm{~b}-\mathrm{a}}\right) \tag{1}
\end{align*}
$$

To find C,
Imagine A to be made open circuited (i.e. made non conducting), then

$$
\begin{equation*}
\mathrm{C}_{2}=4 \pi \varepsilon_{0} \mathrm{~Kb} \tag{2}
\end{equation*}
$$

Case I : When battery is connected to B and A is earthed. Then C_{1} and C_{2} are in parallel
$\Rightarrow \mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$
$\Rightarrow \mathrm{C}=4 \pi \varepsilon_{0} \mathrm{~K}\left(\frac{\mathrm{ab}}{\mathrm{b}-\mathrm{a}}\right)+4 \pi \varepsilon_{0} \mathrm{~Kb}$
$\Rightarrow \mathrm{C}=4 \pi \varepsilon_{0} \mathrm{~K}\left(\frac{\mathrm{~b}^{2}}{\mathrm{~b}-\mathrm{a}}\right)$

Case II : When battery is connected to A , then C_{1} and C_{2} are in series.
$\Rightarrow \frac{1}{\mathrm{C}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}$
$\Rightarrow \frac{1}{\mathrm{C}}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{ab}} \frac{1}{4 \pi \varepsilon_{0} \mathrm{~K}}+\frac{1}{4 \pi \varepsilon_{0} \mathrm{~Kb}}$
$\Rightarrow \frac{1}{\mathrm{C}}=\frac{1}{4 \pi \varepsilon_{0} \mathrm{~Kb}}\left(\frac{\mathrm{~b}-\mathrm{a}}{\mathrm{a}}+1\right)$
$\Rightarrow \frac{1}{\mathrm{C}}=\frac{1}{4 \pi \varepsilon_{0} \mathrm{~Kb}}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)$
$\Rightarrow \mathrm{C}=4 \pi \varepsilon_{0} \mathrm{Ka}$
Case III : When battery connected to A and B is earthed. Then C_{2} can be omitted as it will not receive any charge.
So, $\quad \mathrm{C}=\mathrm{C}_{1}$
$\Rightarrow \quad \mathrm{C}=4 \pi \varepsilon_{0} \mathrm{~K}\left(\frac{\mathrm{ab}}{\mathrm{b}-\mathrm{a}}\right)$
Case IV : When battery connected to B and A is open circuited (or made non conducted) then C_{1} can be omitted (as it is open circuited). So,

$$
\mathrm{C}=\mathrm{C}_{2} \quad \Rightarrow \quad \mathrm{C}=4 \pi \varepsilon_{0} \mathrm{~Kb}
$$

Cylindrical capacitor :

Let inner cylinder be given a charge per unit length of $\lambda\left(=\frac{\mathrm{q}}{\ell}\right)$. A charge -q is induced on length ℓ at inner surface of outer cylinder

$$
\begin{aligned}
& \mathrm{E}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{r}} \text { for } \mathrm{a}<\mathrm{r}<\mathrm{b} \\
\Rightarrow & -\frac{\mathrm{dV}}{\mathrm{dr}}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{Kr}}
\end{aligned}
$$

$$
\Rightarrow \int_{\substack{\text { inner } \\ \text { surface }}}^{\substack{\text { outer } \\ \text { surface }}} \mathrm{dV}=-\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{~K}} \int_{\mathrm{r}=\mathrm{a}}^{\mathrm{r}=\mathrm{b}} \frac{\mathrm{dr}}{\mathrm{r}}
$$

$$
\Rightarrow \mathrm{V}_{\text {inner surface }}-\mathrm{V}_{\text {outer surface }}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{~K}} \log _{\mathrm{e}}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)
$$

Since, inner surface is at higher potential and outer at lower potential, so

Gaussian surface
$\Rightarrow \mathrm{V}_{\text {outer surface }}-\mathrm{V}_{\text {inner surface }}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{~K}} \log _{\mathrm{e}}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)$
$\Rightarrow \mathrm{V}_{\text {inner surface }}-\mathrm{V}_{\text {outer surface }}=\frac{\mathrm{q}}{2 \pi \varepsilon_{0} \ell \mathrm{~K}} \log _{\mathrm{e}}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)$
$\Rightarrow \mathrm{C}=\frac{\mathrm{q}}{\mathrm{V}_{\text {inner surface }}-\mathrm{V}_{\text {outer surface }}}=\frac{2 \pi \varepsilon_{0} \ell \mathrm{~K}}{\log _{\mathrm{e}}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)}$
$\Rightarrow \mathrm{C}=\frac{2 \pi \varepsilon_{0} \ell \mathrm{~K}}{\log _{\mathrm{e}}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)}$
(A) Energy stored in a capacitor $\mathrm{E}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \mathrm{QV}$ $=\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}}$ and energy stored per unit volume $=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$

Note: The energy is stored in a capacitor is in the form of electric field between the plates.
(B) A parallel plate capacitor is charged by a battery and then the capacitor disconnected from the battery (a) If the distance between plates of the capacitor is increased then the new parameter of the capacitors as compared to the previous parameters is
$\mathrm{q}^{\prime}=\mathrm{q} ; \mathrm{C}^{\prime}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}^{\prime}}, \mathrm{V}^{\prime}=\frac{\mathrm{q}^{\prime}}{\mathrm{C}^{\prime}}$,
$\mathrm{E}^{\prime}=\frac{\mathrm{V}^{\prime}}{\mathrm{d}^{\prime}}$ (charge will not change) Energy $=\frac{1}{2} \mathrm{C}^{\prime} \mathrm{V}^{\prime 2}$ If a dielectric slab (dielectric constant k) is introduced between the plates then
$\mathrm{q}^{\prime}=\mathrm{q}, \mathrm{C}^{\prime}=\mathrm{kC}, \mathrm{V}^{\prime}=\frac{\mathrm{V}}{\mathrm{k}}, \mathrm{E}^{\prime}=\frac{\mathrm{E}}{\mathrm{k}} \quad \mathrm{U}^{\prime}($ Energy $)=\frac{\mathrm{U}}{\mathrm{k}}$ (charge will not change)
(C) A parallel plate capacitor is charged by a battery.
(a) If the distance between plates of the capacitor is Increased (with the battery connected) then the new parameters of the capacitors as compared to the previous parameters is
$\mathrm{V}^{\prime}=\mathrm{V}, \mathrm{C}^{\prime}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}^{\prime}}, \mathrm{q}^{\prime}=\mathrm{C}^{\prime} \mathrm{V}^{\prime}, \mathrm{E}^{\prime}=\frac{\mathrm{V}^{\prime}}{\mathrm{d}}$,

Energy $\mathrm{U}^{\prime}=\frac{1}{2} \mathrm{C}^{\prime} \mathrm{V}^{\prime 2}$
(b) If a dielectric slab (dielectric constant k) is introduced between two plates then
$\mathrm{V}^{\prime}=\mathrm{V}, \mathrm{C}^{\prime}=\mathrm{kC}, \mathrm{q}^{\prime}=\mathrm{kq}, \mathrm{E}^{\prime}=\frac{\mathrm{E}}{\mathrm{k}} ; \mathrm{U}^{\prime}=\mathrm{KU}$
(p.d.) will not change)

Solved Examples

1. A capacitor of $20 \mu \mathrm{~F}$ and charged to 500 volt is connected in parallel with another capacitor of $10 \mu \mathrm{~F}$ charged to 200 volt. Find the common potential.
Sol. Charge on one capacitor $\mathrm{q}_{1}=\mathrm{C}_{1} \mathrm{~V}_{1}$
$\therefore \mathrm{q}_{1}=20 \times 10^{-6} \times 500=0.01$ coulomb
Charge on second capacitor

$$
\mathrm{q}_{2}=10 \times 10^{-6} \times 200=0.002 \text { coulomb }
$$

The charge on the two capacitors
$\mathrm{q}=\mathrm{q}_{1}+\mathrm{q}_{2}=0.01+0.002=0.003$ coulomb
Total capacity $\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$

$$
\begin{aligned}
& =20 \times 10^{-6}+10 \times 10^{-6} \\
& =30 \times 10^{-6} \text { Farad. }
\end{aligned}
$$

Common potential $=\mathrm{q} / \mathrm{C}$

$$
=\frac{0.012}{30 \times 10^{-6}}=400 \text { Volt. }
$$

2. A battery of 10 V is connected to a capacitor of capacity of 0.1 F . The battery is now removed and this capacitor is connected to a second uncharged capacitor. If the charge distributes equally on these two capacitors, find the total energy stored in the two capacitors. Further, compare this energy with the initial energy stored in the first capacitor.
Sol. The initial energy stored in the first capacitor.

$$
\begin{aligned}
\mathrm{U}_{0} & =\frac{1}{2} \mathrm{CV}^{2} \\
& =\frac{1}{2} \times 0.1 \times(10)^{2}=5.0 \mathrm{~J}
\end{aligned}
$$

When this capacitor is connected to the second uncharged capacitor, the charge distributes equally. This shows that the capacitance of the second capacitor is also C. The voltage across each capacitor will be $V / 2$. If U be the energy stored in the two capacitors, then

$$
\begin{aligned}
& \mathrm{U}=\frac{1}{2} \mathrm{C}\left(\frac{\mathrm{~V}}{2}\right)^{2}+\frac{1}{2} \mathrm{C}\left(\frac{\mathrm{~V}}{2}\right)^{2} \\
&=\frac{1}{4} \mathrm{CV}^{2}=2.5 \mathrm{~J} \\
& \frac{\mathrm{U}}{\mathrm{U}_{0}}=\frac{2.5}{5.0}=\frac{1}{2}
\end{aligned}
$$

3. Two isolated metallic solid spheres of radii R and $2 R$ are charged such that both of these have same charge density σ. The spheres are located far away from each other, and connected by a thin conducting wire. Find the new charge density on the bigger sphere.
Sol. Charge on smaller sphere

$$
\mathrm{Q}_{1}=4 \pi \mathrm{R}^{2} \cdot \sigma
$$

Charge on bigger sphere

$$
\begin{equation*}
\mathrm{Q}_{2}=4 \pi(2 \mathrm{R})^{2} \sigma=16 \pi \mathrm{R}^{2} \sigma \tag{1}
\end{equation*}
$$

\therefore Total charge $\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=20 \pi \mathrm{R}^{2} \sigma$
Capacitances of two spherical conductors are

$$
\mathrm{C}_{1}=4 \pi \varepsilon_{0} \mathrm{R} \text { and } \mathrm{C}_{2}=4 \pi \varepsilon_{0}(2 \mathrm{R})
$$

\therefore Total capacitance

$$
\begin{equation*}
\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}=12 \pi \varepsilon_{0} \mathrm{R} \tag{2}
\end{equation*}
$$

After connection, the common potential V is given by

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}}=\frac{20 \pi \mathrm{R}^{2} \sigma}{12 \pi \varepsilon_{0} \mathrm{R}}=\frac{5 \mathrm{R} \sigma}{3 \varepsilon_{0}}
$$

New charge on bigger sphere

$$
\begin{aligned}
\mathrm{Q}_{2}^{\prime} & =\mathrm{C}_{2} \mathrm{~V} \\
& =4 \pi \varepsilon_{0} R(2 R) \times\left(5 R \sigma / 3 \varepsilon_{0}\right)=\frac{40 \pi \mathrm{R}^{2} \sigma}{3}
\end{aligned}
$$

Surface density

$$
\sigma_{2}^{\prime}=\frac{\mathrm{Q}_{2}^{\prime}}{\text { surface area }}=\frac{\left(\frac{40 \pi \mathrm{R}^{2} \sigma}{3}\right)}{4 \pi(2 \mathrm{R})^{2}}=\frac{5}{6} \sigma
$$

4. A $8 \mu \mathrm{~F}$ capacitor C_{1} is charged to $\mathrm{V}_{0}=120$ volt. The charging battery is then removed and the capacitor is connected in parallel to an uncharged $4 \mu \mathrm{~F}$ capacitor C_{2} (a) what is the potential difference V across the combination? (b) What is the stored energy before and after the switch S is thrown?

Sol. (a) Let q_{0} be the charge on C_{1} initially. Then

$$
\mathrm{q}_{0}=\mathrm{C}_{1} \mathrm{~V}_{0}
$$

when C_{1} is connected to C_{2} in parallel, the charge q_{0} is distributed between C_{1} and C_{2}. Let q_{1} and q_{2} be the charges on C_{1} and C_{2} respectively. Now let V be the potential difference across each condenser.

$$
\begin{aligned}
& \text { Now } & \mathrm{q}_{0} & =\mathrm{q}_{1}+\mathrm{q}_{2} \\
& \text { or } & \mathrm{C}_{1} \mathrm{~V}_{0} & =\mathrm{C}_{1} \mathrm{~V}+\mathrm{C}_{2} \mathrm{~V} \\
& \therefore & & \mathrm{~V}
\end{aligned}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{1}+\mathrm{C}_{2}} \mathrm{~V}_{0}=\frac{8 \mu \mathrm{~F}}{8 \mu \mathrm{~F}+4 \mu \mathrm{~F}}(120 \mathrm{~V})
$$

(b) Initial energy stored

$$
\begin{aligned}
& \mathrm{U}_{0}=\frac{1}{2} \mathrm{C}_{1} \mathrm{~V}_{0}^{2} \\
& =\frac{1}{2}\left(8 \times 10^{-6}\right)(120)^{2} \\
& =5.76 \times 10^{-2} \text { Joule }
\end{aligned}
$$

Final energy stored

$$
\begin{aligned}
\mathrm{U} & =\frac{1}{2} \mathrm{C}_{1} \mathrm{~V}^{2}+\frac{1}{2} \mathrm{C}_{2} \mathrm{~V}^{2} \\
& =\frac{1}{2}\left(8 \times 10^{-6}\right)(80)^{2}+\frac{1}{2}\left(4 \times 10^{-6}\right)(80)^{2} \\
& =3.84 \times 10^{-2} \text { joule }
\end{aligned}
$$

Final energy is less than the initial energy. The loss of energy appears as heat in connecting wires.
5. Calculate the capacitance of a parallel plate condenser, with plate area A and distance between plates d , when filled with a dielectric whose dielectric constant varies as

$$
\begin{array}{ll}
\varepsilon(x)=\varepsilon_{0}+\beta x & 0<x<\frac{d}{2} \\
\varepsilon(x)=\varepsilon_{0}+\beta(d-x) & \frac{d}{2}<x<d
\end{array}
$$

For what value of β would the capacity of the condenser be twice that when it is without any dielectric.
Sol. The capacitance in series is given by

$$
\begin{gathered}
\frac{1}{\mathrm{C}^{\prime}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}} \\
\therefore \frac{1}{\mathrm{C}^{\prime}}=\frac{1}{\mathrm{~A}} \times\left[\int_{0}^{\mathrm{d} / 2} \frac{\mathrm{dx}}{\varepsilon_{0}+\beta \mathrm{x}}+\int_{\mathrm{d} / 2}^{\mathrm{d}} \frac{\mathrm{dx}}{\varepsilon_{0}+\beta(\mathrm{d}-\mathrm{x})}\right] \\
=\frac{1}{\mathrm{~A} \beta}\left[\left\{\log \left(\varepsilon_{0}+\beta \mathrm{x}\right)\right\}_{0}^{\mathrm{d} / 2}-\left\{\log \left(\varepsilon_{0}+\beta(\mathrm{d}-\mathrm{x})_{\mathrm{d} / 2}^{\mathrm{d}}\right]\right.\right. \\
=\frac{1}{\mathrm{~A} \beta}\left[\left\{\log \left(\varepsilon_{0}+\beta \frac{\mathrm{d}}{2}\right)-\log \varepsilon_{0}\right\}-\left\{\log \varepsilon_{0}-\log \left(\varepsilon_{0}+\beta \frac{d}{2}\right)\right\}\right] \\
=\frac{2}{\mathrm{~A} \beta}\left[\log \left(\varepsilon_{0}+\beta \frac{\mathrm{d}}{2}\right)-\log \varepsilon_{0}\right] \\
=\frac{2}{\mathrm{~A} \beta} \log \left(\frac{\varepsilon_{0}+\beta \mathrm{d} / 2}{\varepsilon_{0}}\right)
\end{gathered}
$$

The capacitance C of a condenser without dielectric is given by

$$
\mathrm{C}=\frac{\mathrm{A} \varepsilon_{0}}{\mathrm{~d}}
$$

According to the question, $\mathrm{C}^{\prime}=2 \mathrm{C}$

$$
\begin{aligned}
\therefore & \frac{2}{\mathrm{~A} \varepsilon_{0}} \log \left(\frac{\varepsilon_{0}+\beta \mathrm{d} / 2}{\varepsilon_{0}}\right)=\frac{d}{2 \varepsilon_{0} \mathrm{~A}} \\
& \beta=\frac{4 \varepsilon_{0}}{\mathrm{~d}} \log \left(\frac{\varepsilon_{0}+\beta \mathrm{d} / 2}{\varepsilon_{0}}\right)
\end{aligned}
$$

Physics Fundamental For IIT-Jee

Friction

KEY CONCEPTS \& PROBLEM SOLVING STRATEGY

Friction :

Whenever there is a relative motion between two surfaces in contact with each other, an opposing force comes into play which forbids the relative motion of two bodies. This opposing force is called the force of friction.

Ex. : If a book on a table slides from left to right along the surface of a table, a frictional force directed from right to left acts on the book.
Frictional force may also exist between the surfaces when there is no relative motion. Frictional forces arise due to molecular interactions.

Static and Kinetic Friction :

The frictional force between two surface before the relative motion actually starts is called static frictional force or static friction, While the frictional force between two surfaces in contact and in relative motion is called kinetic frictional force or kinetic friction.
Static friction is a self adjusting force and it adjusts both in magnitude and direction automatically. Its magnitude is always equal to external effective applied force, tending to cause the relative motion and its direction is always opposite to that of external applied force.
So, when a body is not in motion or equilibrium, then Force of static Friction = Applied External Force

Limiting friction, coefficients of friction and angle of friction :

Consider a block resting on a rough horizontal surface. The forces acting on the block are its weight mg downwards and normal reaction N acting upward. Such that $\mathrm{N}=\mathrm{mg}$.

Now suppose a force $\mathrm{F}_{\text {app }}$ is applied to the block to the right, then there will arise a frictional force f directed to the left (opposite to direction of applied
force), which prevents the motion of the block. Let the resultant of \vec{N} and \vec{F} be \vec{R} which makes an angle θ with normal reaction \vec{N}. Resolving \vec{R} along $\overrightarrow{\mathrm{N}}$ and $\overrightarrow{\mathrm{F}}$, we get
$\mathrm{R} \cos \theta=\mathrm{N}$ and $\mathrm{R} \sin \theta=\mathrm{f}$
For equilibrium $N=m g$ and $f=F_{\text {app }}$
If we increase the pull $\mathrm{F}_{\text {app }}$ continuously, the force of friction increases and a stage comes when the body is just on the state of moving. This state is called limiting equilibrium. Under this condition the frictional force is maximum and is equal to applied force.

Limiting Friction :

The maximum value of static frictional force exerted between two surfaces in contact parallel to surfaces for a given normal force between when the body is on the verge of motion them is called limiting friction.

Angles of Friction :

Angle of friction (θ) is the angle which the resultant of force of static friction (f) and normal (N) makes with the normal reaction
The Coefficient of Friction (μ):
It is defined as the ratio of limiting friction F to the normal reaction N between two surface in contact,
i.e., $\quad \mu=\mathrm{F} / \mathrm{N}$
from figure, $\tan \theta=\mathrm{F} / \mathrm{N}$
Equation (3) and (4)
$\mu=\tan \theta$

Static and Kinetic Regions :

If a graph is plotted between applied force and frictional force, the graph is obtained. In figure AC is limiting or (maximum) static friction and BD is kinetic friction. Obviously, kinetic friction is less than static friction.
If relative motion is absent and is at the verge of start $\mu=\mu_{\mathrm{s}}$, the coefficient of static friction but if relative motion is present $\mu=\mu_{\mathrm{k}}$, the coefficient of kinetic friction.
The coefficient of friction depends on the
(a) strength of molecular interaction between the surfaces in contact,
(b) roughness of the two surface in contact.

Whenever we are dealing with problem involving friction we can follow the following analysis flow chart.

Laws of static and kinetic friction :

(a) The force of limiting friction is directly proportional to normal reaction for the same two surfaces in contact and acts opposite to direction of pull.
The kinetic friction is also proportional to normal reaction and acts opposite to direction of instantaneous relative motion. The kinetic friction is less than the static friction.
(b) The force of limiting (or static) friction is independent of area of contact of bodies as long as normal reaction remains the same.
The kinetic friction (to a good approximation) is independent of velocity, provided the velocity is neither too large nor too small.

Angle of repose (α)

This is concerned with an inclined plane on which a block rests, exerting its weight on the plane.
The angle of repose α is the angle which an inclined plane makes with the horizontal such that a body placed on it is on the verge of motion (is just about to loose the state of rest).
Under this condition the forces acting on the block are:
(a) its weight mg , downward,
(b) normal reaction N , normal to plane,
(c) a force of friction f_{s}, parallel and tangential to plane upward.
Taking α as angle of inclination of the plane with the horizontal and resolving mg , parallel and
perpendicular to inclined plane, then for equilibrium, we get

$$
\begin{aligned}
& \mathrm{N}=\mathrm{mg} \cos \alpha \text { and } \mathrm{f}_{\mathrm{s}}=\mathrm{mg} \sin \alpha \\
\Rightarrow & \tan \alpha=\frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{~N}}
\end{aligned}
$$

Frictional force on a bicycle in motion :

(a) When a wheel is rotated about its axle without sliding, the frictional force acting on it is the rolling friction and it acts opposite to the direction of tendency of motion of a points of its contacts with the ground. In case the wheel rotates clockwise and frictional force (f) on wheel is forward. In case the wheel rotates anticlockwise, the frictional force (f) on wheel is backward.
(b) When the bicycle is pedalled, the force exerted on the rear wheel through the pedal-chain-axle system is in backward direction, therefore force of friction on rear wheel is forward. The front wheel of cycle moves by itself in forward direction, hence the force of friction of front-wheel is in backward direction.
(c) When the bicycle is not pedalled, no external force is being exerted, both wheels move forward by itself due to inertia and so the net frictional force on both wheels is in backward direction.

Solved Examples

1. A block of mass 5 kg is placed on a slope which makes an angle of 20° with the horizontal and is given a velocity of $10 \mathrm{~m} / \mathrm{sec}$ up the slope. Assuming that the coefficient of sliding friction between the block and the slope is 0.20 , find how far the block travels up the slope? Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}$.
Sol. This situation is shown in fig.

The component of the weight perpendicular to plane $=\mathrm{mg} \cos 20^{\circ}=5 \times 10 \times 0.9397=46.98 \mathrm{~N}$ The component of the weight parallel to the plane
$=m g \sin 20^{\circ}=5 \times 10 \times 0.3420=17.10 \mathrm{~N}$
From figure $\mathrm{R}=\mathrm{mg} \cos 20^{\circ}=46.98 \mathrm{~N}$
Here the coefficient of kinetic friction $=0.2$
Thus the frictional force $\mathrm{X}=0.2 \times 46.98=9.39 \mathrm{~N}$
The frictional force will be downward because the motion is in the upward direction.
The resultant force parallel to the plane is given by
$=\mathrm{X}+\mathrm{mg} \sin 20^{\circ}=9.39+17.10=26.49 \mathrm{~N}$
From Newton's law $F=$ ma, i.e., $26.49=5 \times \mathrm{a}$
$\therefore \mathrm{a}=\frac{26.49}{5}=5.29 \mathrm{~m} / \mathrm{s}^{2}$ downward
When the block is given a velocity $10 \mathrm{~m} / \mathrm{s}$ in the upward direction we have
$\mathrm{u}=10 \mathrm{~m} / \mathrm{s}, \mathrm{v}=0, \mathrm{a}=-5.9 \mathrm{~m} / \mathrm{s}^{2}$.
(Taking the direction up the plane as positive)
Let s be the distance traveled by the block.
Using the formula $v^{2}=u^{2}+2 a \mathrm{~s}$, we have
$0=(10)^{2}-2 \times 5.29 \times \mathrm{s}$
or $\mathrm{s}=\frac{100}{2 \times 5.29}=9.45 \mathrm{~m}$.
2. A block is projected up with $10 \mathrm{~m} / \mathrm{s}$ along a fixed inclined plane of inclination 37° with the horizontal. If the time of ascend from the point of projection is half the time of descend to the same point, find the distance travelled by the block during the up and down journey.
Sol. Let μ, t_{1} and t_{2} be the coefficient of friction between the plane and the block, time of ascend and time of descend respectively.
The retardation while going up

$$
a_{1}=g(\sin \theta+\mu \cos \theta)=10\left(\frac{3}{5}+\mu \frac{4}{5}\right)
$$

The acceleration while descending

$$
a_{2}=g(\sin \theta-\mu \cos \theta)=10\left(\frac{3}{5}-\mu \frac{4}{5}\right)
$$

Now, $s=$ distance of ascend $=$ distance of descend. As final velocity is zero, we have

$$
\begin{aligned}
0 & =u-a_{1} t_{1} \quad \text { or } \quad u=a_{1} t_{1} \\
\text { Now } & =a_{1} t_{1}{ }^{2}-\frac{1}{2} a_{1} t_{1}{ }^{2}=\frac{1}{2} a_{1} t_{1}{ }^{2} \\
s & =a_{1} t_{1}{ }^{2}=\frac{1}{2} a_{2} t_{2}{ }^{2} \text { and } t_{2}=2 t_{1} \\
\therefore\left(\frac{a^{2}}{a_{1}}\right) & =\left(\frac{t_{1}}{t_{2}}\right)^{2} \quad \text { or } \quad \frac{\left(\frac{3}{5}-\mu \frac{4}{5}\right)}{\left(\frac{3}{5}+\mu \frac{4}{5}\right)}=\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

Solving we get $\quad \mu=(9 / 20)$
Again $\mathrm{a}_{1}=10\left(\frac{3}{5}+\frac{9}{20} \times \frac{4}{5}\right)=9.6 \mathrm{~m} / \mathrm{sec}^{2}$
$\therefore \mathrm{s}=\frac{\mathrm{u}^{2}}{2 \mathrm{a}_{1}}=\frac{(10)^{2}}{2 \times 9.6}=5.21$ meter
So total distance $=2 \mathrm{~s}=10.42$ metre
3. A block weighing 20 nt is at rest on a horizontal table. The coefficient of static friction between block and table is 0.50 . (a) What is the magnitude of the horizontal force that will just start the block moving ?
(b) What is the magnitude of a force acting upward 60° from the horizontal that will just start the block moving ? (c) If the force acts down at 60° from the horizontal how large can it be without causing the block to move ?
Sol. (a) As shown in fig. the horizontal force F that will just start the block moving is equal to the maximum force of static friction. Thus,

$\mathrm{F}=\mu \mathrm{R}=\mu \mathrm{W}=0.50 \times 20 \mathrm{nt} .=10.0 \mathrm{nt}$.
(b) The forces acting on the block are shown in fig.

The applied force is inclined at an angle θ in the upward direction. Its horizontal and vertical
components are $\mathrm{F} \cos \theta$ and $\mathrm{F} \sin \theta$ respectively. In equilibrium.
$\mathrm{F} \cos \theta=\mu \mathrm{R}$ and $\mathrm{F} \sin \theta+\mathrm{R}=\mathrm{W}$
or $\mathrm{R}=(\mathrm{W}-\mathrm{F} \sin \theta)$
$\therefore \mathrm{F} \cos \theta=\mu(\mathrm{W}-\mathrm{F} \sin \theta)=\mu \mathrm{W}-\mu \mathrm{F} \sin \theta$
$F(\cos \theta+\mu \sin \theta)=\mu W$
or $\mathrm{F}=\frac{\mu \mathrm{W}}{\cos \theta+\mu \sin \theta}$
Here $\mu=0.50, \mathrm{~W}=20 \mathrm{nt}$. and $\theta=60^{\circ}$

$$
\begin{aligned}
\mathrm{F} & =\frac{0.50 \times 20}{\cos 60^{\circ}+0.5 \sin 60^{\circ}}=\frac{10}{0.50+0.5 \times 0.866} \\
& =10.72 \mathrm{nt}
\end{aligned}
$$

(c) In this case,

$\mathrm{F} \cos \theta=\mu \mathrm{R}$ and $\mathrm{R}=\mathrm{W}+\mathrm{F} \sin \theta$
Solving we get,

$$
\begin{aligned}
\mathrm{F} & =\frac{\mu \mathrm{W}}{\cos \theta-\mu \sin \theta}=\frac{0.50 \times 20}{0.50-0.5 \times 0.866} \\
& =149.2 \mathrm{nt}
\end{aligned}
$$

4. Two blocks, $\mathrm{m}_{1}=2 \mathrm{~kg}$ and $\mathrm{m}_{2}=4 \mathrm{~kg}$, are connected with a light string that runs over a frictionless peg to a hanging block with a mass M as shown in fig. (a). The coefficient of sliding friction between block m_{2} and the horizontal surface at the speeds involved is $\mu_{\mathrm{k}}=0.2$. The coefficient of static friction between the two blocks is $\mu_{\mathrm{S}}=0.4$. What is the maximum mass M for the hanging block if the block m_{1} is not to slip on block m_{2} while m_{2} is sliding over the surface?
Sol. The relevant free body diagrams are shown in fig.(b) Using two body system, we have

$$
\begin{align*}
& \mathrm{N}-\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}=0 \tag{1}\\
& \mathrm{~T}-\mathrm{F}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{a} \tag{2}
\end{align*}
$$

For hanging block

$$
\begin{equation*}
\mathrm{Mg}-\mathrm{T}=\mathrm{Ma} \tag{3}
\end{equation*}
$$

From eqs. (2) and (3),

$$
\begin{align*}
& \quad \mathrm{Mg}-\mathrm{f}=\left(\mathrm{M}+\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{a} \\
& \text { But } \mathrm{f}=\mu_{\mathrm{k}} \mathrm{~N}=\mu_{\mathrm{k}}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) \mathrm{g} \quad[\because \text { using eq. (1) }] \\
& \therefore \mathrm{Mg}-\mu_{\mathrm{k}}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}=\left(\mathrm{m}+\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{a} \\
& \text { or } \mathrm{a}=\frac{\left\{\mathrm{M}-\mu_{\mathrm{k}}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)\right\} \mathrm{g}}{\left(\mathrm{M}+\mathrm{m}_{1}+\mathrm{m}_{2}\right)} \tag{4}
\end{align*}
$$

From free body diagram of mass m_{1}, we have
$\mathrm{N}_{1}-\mathrm{m}_{1} \mathrm{~g}=0$ and $\mathrm{f}_{1}=\mathrm{m}_{1} \mathrm{a}$
It should be noticed that the force f_{1} accelerates m_{1} to the right. Just before slipping occurs, we find

$$
\begin{align*}
& \frac{\mathrm{f}_{1}}{\mathrm{~N}_{1}}=\mu_{\mathrm{S}} \text { or } \mu_{\mathrm{S}}=\frac{\mathrm{m}_{1} \mathrm{a}}{\mathrm{~m}_{1} \mathrm{~g}}=\frac{\mathrm{a}}{\mathrm{~g}} \\
\therefore \quad & \mu_{\mathrm{S}}=\frac{\left\{\mathrm{M}-\mu_{\mathrm{k}}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)\right\}}{\left(\mathrm{M}+\mathrm{m}_{1}+\mathrm{m}_{2}\right)} \tag{5}
\end{align*}
$$

Solving eq. (5) for M, we have

$$
\begin{aligned}
M & =\frac{\left(\mu_{\mathrm{S}}+\mu_{\mathrm{k}}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)\right.}{1-\mu_{\mathrm{S}}} \\
\text { or } M & =\frac{(0.4+0.2)(2 \mathrm{~kg}+4 \mathrm{~kg})}{(1-0.4)}=6 \mathrm{~kg}
\end{aligned}
$$

5. In fig.(a) the blocks A, B and C weight are $3 \mathrm{~kg}, 4 \mathrm{~kg}$ and 8 kg respectively. The coefficient of sliding friction between any two surfaces is 0.25 . A is held at rest by a massless rigid rod fixed to the wall, while B and C are connected by a light flexible cord passing around a fixed frictionless pulley. Find the force P necessary to drag C along the horizontal surface to the left at a constant speed. Assume that the arrangement shown in the diagram, B on C and A on B is maintained all the throughout.

Sol. When block C moves towards left, B moves towards right, while A is fixed. There would be a tension T in the string. Under this condition, let us consider the frictional forces between different surfaces.
Frictional force between A and B

$$
=\mu \mathrm{R}=0.25 \times 3
$$

Frictional force between C and B

$$
=\mu R=0.25(3+4)=0.25 \times 7
$$

Frictional force between C and surface

$$
=0.25(3+4+8)=0.25 \times 15
$$

Considering fig. (b)

Fig (b)
Tension in the string $=$ Frictional forces at upper and lower surfaces of block B
or $\quad \mathrm{T}=0.25 \times 3+0.25 \times 7=2.5 \mathrm{~kg} \mathrm{wt}$.
For block C,
$\mathrm{P}=\mathrm{T}+$ Frictional force between C and $\mathrm{B}+$ Frictional force between C and surface
$=2.5+0.25 \times(3+4)+0.25 \times(15)=8 \mathrm{~kg} \mathrm{wt}$.
$=8 \times 9.8=78.4$ newton

Organic Chemistry Fundamentals

REACTION MECHANISM

Elimination reactions :

The elimination reactions are reverse of addition reactions. In these reactions two atoms or group attached to the adjacent carbon atoms of the substrate molecule are eliminated to form a multiple bond. In these reactions a atom or group from α-carbon atom and a proton from the β-carbon are eliminated.

In eliminations reactions, the presence of one hydrogen on the β-carbon atom is necessary. In general the elimination reactions are divided into two types, i.e., bimolecular elimination reactions $\left(\mathrm{E}_{2}\right)$ and unimolecular elimination reactions $\left(\mathrm{E}_{1}\right)$.

Bimolecular elimination reactions $\left(\mathbf{E}_{2}\right)$:

In these elimination reactions, the rate of elimination depends on the concentration of the substrate and the nucleophile and the reaction is of second order. It is represented as E2. Like $\mathrm{S}_{\mathrm{N}} 2$ reaction, the E 2 reaction is also one step process. In these reactions abstraction of proton from the β-carbon atom and the expulsion of an atom or group from the α-carbon atom occur simultaneously. The mechanism of this reaction is represented as follows:

The above reaction is a one step process and passes through a transition state. This reaction is also known as 1,2 -elimination or simply β-elimination. In these reactions, the two groups to be eliminated (i.e., H and X) are trans to each other and hence E2 reactions are generally trans elimination.
The second-order elimination reaction may also proceed in two steps (as in E1 elimination which will be discussed subsequently). In this mechanism, the base removes the hydrogen in the first step to form an intermediate carbanion. In the second step, the intermediate carbanion looses the leaving group. The second step is slow and is rate determining step.

The rate of this reaction is dependent on the carbanion (conjugate base of the substrate). So this mechanism is called ElcB mechanism (Elimination, Unimolecular from conjugate base).
E 1 cB mechanism is not common for the E2 reactions. The carbanion mechanism occurs only where the carbanion from the substrate is stabilized and where the leaving group is a poor leaving group. A typical example, which follows E 1 cB mechanism is the formation of 1,1-dichloro-2,2-difluoroethene from 1,1-dichloro-2,2,2-trifluoroethane in presence of sodium ethoxide.

In the above case the carbanion is strongly stabilized due to -I effect of halogens. Also F^{-}is a poor leaving group.
A distinction between the E2 and E1cB mechanism can be made by tracer experiments. Thus, the reaction of 1-bromo-2-phenylethane (this substrate was selected as Ph group is expected to increase the acidity of β-hydrogen and also to stabilize the carbanion) with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OD}$ gives back the starting 1-bromo-2-phenylethane. If the carbanion mechanism had operated, the deuterium would have been found in the recovered 1-bromo-2-phenylethane, which is not the case.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$
1-Bromo-2-phenylethane

In case the above reaction is allowed to go to completion, the product obtained will be

The styrene obtained does not contain any deuterium (contrary to what has been shown in the above E1cB mechanism). So in the above reaction E2 mechanism operates.
The E2 mechanism is supported by the following evidences.
(i) During elimination, there is no rearranged product obtained. This is due to the fact that E2 is a single step process and does not involve the formation of intermediate carbocation (the carbocations are known to undergo rearrangement).
(ii) The E2 mechanism finds support from isotope labeling experiments. Dehydrohalogenation of unlabelled 1-bromopropane is seven times faster than the dehydrohalogenation of $\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CH}_{2} \mathrm{Br}$.

In E2 mechanism a hydrogen (from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$) or a deuterium (from $\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CH}_{2} \mathrm{Br}$) has to be abstracted. It is known that the $\mathrm{C}-\mathrm{D}$ bond is stronger than the $\mathrm{C}-\mathrm{H}$ bond and requires more energy to be broken. Therefore, rate of elimination in $\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CH}_{2} \mathrm{Br}$ should be slower. In fact, it has been found that in the unlabelled alkyl halides the elimination rate is seven times more than in labelled alkyl halides.
Unsymmetrical substrate which has hydrogen attached to two different β-carbons can affored two alkenes. For example, 2-bromobutane on dehydrohalogenation may give 1-butene or 2-butene.

In a similar way, decomposition of sec-butyltrimethylammonium hydroxide may give a mixture of two alkenes. The question arises as to which alkene will be obtained in major amount in the above
dehydrohalogenation. The orientation of the reaction is determined by Hafmann and Saytzeff Rule.
Hofmann Rule : This rule is applicable for those substrates in which α-carbon atom is attached to a positively charged atom. According to this rule, in the elimination reaction of positively charged species, the major product will be the alkene which is least substituted.

Saytzeff Rule : In case of unsymmetrical alkyl halides, for example in 2-bromobutane, the course of elimination is determined by Saytzeff Rule. According to this rule, hydrogen is eliminated preferentially from the carbon atom which has less number of hydrogen atoms and so the highly substituted alkene is the major product.

2-Bromo-2-methylbutane

The formation of highly substituted alkene can be explained as follows.
The transition states of less substituted and more substituted alkenes from an alkyl halide are represented as shown below:

T.S. of less substituted alkene T.S. of more substituted alkene

Both the transition states have partial double bond character. However, the transition state leading to more stable alkene is more stabilized and is of lower energy. Thus, the more stable alkene is formed as the major product.

Energy diagram for a typical E2 reaction, showing why the more substituted alkene predominates

Hofmann rule can be understood by considering the mechanism of elimination reaction of quaternary ammonium hydroxide.

Another possibility is :

$$
\xrightarrow{\text { Route } \mathrm{b}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}
$$

In the above reaction the strong electron-withdrawing group makes the hydrogens of the β-carbons more acidic for facile abstraction by the base. In this compound, with alternate β-hydrogens (marked β^{\prime} and $\beta^{\prime \prime}$), the $\beta^{\prime \prime}$ hydrogen are less acidic due to +I effect of the adjacent methyl group. Hence β^{\prime} hydrogen is relatively more acidic and is removed to give the alkene (ethene) by route a.
In elimination reactions steric effect also plays an important role. Thus, dehydrohalogenation of alkyl halide using the bulky base leads to the formation of terminal alkene as the major product.

Unimolecular elimination reactions (E1) :

In these reactions the rate of elimination is dependent only on the concentration of the substrate and is independent of the concentration of the nucleophile and the reaction is of first order, (E1). Like $\mathrm{S}_{\mathrm{N}} 1$
reaction the E1 reaction is also a two step process. The first step is the slow ionization of alkyl halide to give the carbocation. The second step involves the fast abstraction of a proton from the adjacent β-carbon atom giving rise to the formation of an alkene.

In case the substrate is such that more than one alkenes can be formed, that alkene will predominate which has larger number of alkyl groups on the double bonded carbon (this is as per Saytzeffs rule. This can be visualised since the substituted alkyl groups will stabilise the alkene by hyperconjugation.

2-Bromo-3-methylbutane
2-Methyl-2-butene (major)

3-Methyl-1-butene (minor)
The acid catalysed dehydration of alcohols also follows E1 mechanism.

t-Butyl alcohol

In the E1 mechanism the rate of reaction is determined by the rate of formation of carbocation, which in turn depends on the stability of carbocation. Due to the formation of carbocation, these may undergo rearrangements. This has been experimentally confirmed.

Feartiest Congratulations on the Occasion of Coral \& Silver Jubilee Year 2011
 Glorious 37 Years

 SENIOR SECONDARY SCHOOL

 SENIOR SECONDARY SCHOOL GOVERNED BY CHILDREN SCHOOL SOCIETY (REGD.)

 GOVERNED BY CHILDREN SCHOOL SOCIETY (REGD.)}

Raj. Board R.B.S.E. Ajmer Nursery to XII

Central Board
C.B.S.E. New Delhi Nursery to XII

National Open Board

 NIOS, New Delhi VIII, X \& XIIMEDIUM: English \& Hindi
GROUP: Science, Agri, Comm., Arts \& Computer \star Special Facilities For Coaching Students \star

Website : childrenschoolkota.com | Email : childrenschool_kota@yahoo.com

Dadabari : 2502160, 2502760 Fax : 0744-2502060

Chhawani : 2362100, 2362262
Fax : 0744-2362277

KEY CONCEPT

Physical
Chemistry
Fundamentals

ENERGETICS

Thermodynamics deals with the transfer of heat between a chemical system and its surroundings when a reaction or phase change takes place within the system. The entire formulation of thermodynamics is based on two fundamental laws which have been established on the basis of experimental on the basis of experimental behaviour of macroscopic aggregates of matter, collected over a long period of time.

Since

First Law of thermodynamics

The internal energy of a system can be changed by transferring heat to/from the system from/to the surroundings. It can also be changed by doing the mechanical work on/by the system by/on the surroundings. These facts are represented in the form of the first law of thermodynamics as

$$
\mathrm{dU}=\mathrm{dq}+\mathrm{dw} \quad \text { or } \quad \Delta \mathrm{U}=\mathrm{q}+\mathrm{w}
$$

Since heat given to the system and work done on the system raise the internal energy of the system, these two operations are assigned positive values. The converse of the two operations, viz., heat given out and work done by the system are assigned negative values.
The expression of work done by/on a gaseous system is given by

$$
\mathrm{dw}=-\mathrm{p}_{\mathrm{ext}} \mathrm{dV}
$$

Where $p_{\text {ext }}$ is the external pressure against which the volume gaseous system is changed by an amount dV . For a constant external pressure, we have

$$
\mathrm{w}=-\mathrm{nRT} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right)
$$

where V_{1} and V_{2} are the initial and final volumes of the gaseous system.
If $p_{\text {ext }}$ differs from the pressure of the gas by infinitesimal amount, the work is said to be carried out under reversible condition. In this case, the expression of work under constant temperature condition is given by

$$
\mathrm{w}=-\mathrm{nRT} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right)^{\prime}
$$

Note that for $V_{2}>V_{1}$, there occurs an expansion of the gas. The work is done by the system on the surroundings and it carries a negative sign.
For $\mathrm{V}_{1}>\mathrm{V}_{2}$, there occurs compression of the gaseous system. The work is done by the surroundings on the system and it carries a positive sign.

Internal energy and enthalpy

From the first law of thermodynamics, it can be shown that the heat transferred at constant volume changes the internal energy of the system, whereas
that at constant pressure changes the enthalpy of the system.
$\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}, \mathrm{m}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$; and $\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{p}, \mathrm{m}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
where $C_{v, m}$ and $C_{p, m}$ are the molar heat capacities at constant volume and constant pressure, respectively.
In the laboratory, the majority of chemical reactions are carried out under the condition of constant pressure, and thus the heat transferred in such a system is equal to the enthalpy change in a chemical reaction. Since the enthalpy of a system can also change due to the variation in temperature and pressure, it is, therefore essential that the reactants and products in a chemical reaction must have the same temperature and pressure.

Enthalpy change of a chemical equation

The enthalpy change of thermochemical equation is

$$
\Delta \mathrm{H}=\sum_{\text {(products) }} \mathrm{v}_{\mathrm{j}} \mathrm{H}_{\mathrm{m}, \mathrm{j}}-\sum_{\text {(reactan } \mathrm{s} \text {) }} \mathrm{v}_{\mathrm{i}} \mathrm{H}_{\mathrm{m}, \mathrm{i}}
$$

where $\mathrm{H}_{\mathrm{m}, \mathrm{i}}$ refers to the molar enthalpy of species i in the balanced chemical equation and v_{i} the corresponding stoichiometric coefficient. The unit of $\Delta \mathrm{H}$ are $\mathrm{kJ} \mathrm{mol}^{-1}$.
Two types of reactions may be distinguished.
(a) Exothermic reactions For these $\Delta \mathrm{H}$ is negative, which implies negative q_{p} and hence release of heat when reactants are converted into products. In this case

$$
\Sigma \mathrm{H}(\text { products })<\Sigma \mathrm{H} \text { (reactants) }
$$

(b) Endothermic reactions For these $\Delta \mathrm{H}$ is is positive, which implies positive q_{p} and hence absorption of heat when reactants are converted into products. In this case

$$
\Sigma \mathrm{H}(\text { products })>\Sigma \mathrm{H}(\text { reactants })
$$

Molar enthalpies of formations

It is not possible to determine the absolute value of enthalpy of a substance. However, based on the following convention, the relative values of standard molar enthalpies of formation (the term standard indicates of pressure of 1 bar) other substances can be determined.
The enthalpy of formation of every element in its stable states of aggregation at 1 bar and $25^{\circ} \mathrm{C}$ is assigned a zero value.
For example, $\Delta_{\mathrm{f}} \mathrm{H}^{\circ}$ (graphite) $=0 \Delta_{\mathrm{f}} \mathrm{H}^{0}\left(\mathrm{Br}_{2}, 1\right)=0$ $\Delta_{\mathrm{f}} \mathrm{H}^{\mathrm{o}}(\mathrm{S}$, rhombic $)=0 \Delta_{\mathrm{f}} \mathrm{H}^{\mathrm{o}}\left(\mathrm{H}_{2}, \mathrm{~g}\right)=0$ and so on.]

The enthalpy change of a chemical equation can be computed by using the expression

$$
\Delta_{\mathrm{r}} \mathrm{H}^{\mathrm{o}}=\sum_{\text {(products) }} \Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{i}}^{0}-\sum_{\text {(reactors) }} \Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{i}}^{0}
$$

Hess's law of constant heat summation

Since the molar enthalpies of formation of reactants and products involved in a chemical equation have definite values, the enthalpy change of (or heat involved in) the chemical equation will have a definite value, irrespective of the fact whether the reaction is carried out in one step or more than one step. This fact is known as Hess's law of constant heat summation. For example,
(i) C (graphite) $+\mathrm{O}_{2}\left((\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})\right.$

$$
\Delta \mathrm{H}_{1}=-393.51 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(ii) C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}($ g $)$

$$
\begin{gathered}
\qquad \Delta \mathrm{H}_{2}=-110.52 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
\Delta \mathrm{H}_{3}=-282.99 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\text { Obviously, } \Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}
\end{gathered}
$$

Types of reactions and corresponding enthalpy changes The enthalpy change in a reaction is suitable named according to the type of reaction in question. Two types of reaction are specifically defined as follows.
Enthalpy of formation: the enthalpy of combustion of a given substance is defined as the enthalpy change when 1 mole of a given substance is formed, starting from the elements in their stable states of aggregation. A few examples are

$$
\begin{aligned}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow & \mathrm{H}_{2} \mathrm{O}(1) \\
& \Delta_{\mathrm{f}} \mathrm{H}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}, 1\right)=-285.77 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
12 \mathrm{C}(\text { graphite })+ & 11 \mathrm{H}_{2}(\mathrm{~g})+\frac{11}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s}) \\
& \Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}, \mathrm{~s}\right)=-2218 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Enthalpy of Combustion: The enthalpy of combustion of a given substance is defined as the enthalpy change when one mole of this substance combines with requisite amount of oxygen to form products in their stable states of aggregation. A few examples are

$$
\begin{gathered}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \\
\Delta_{\mathrm{c}} \mathrm{H}\left(\mathrm{CH}_{4}, \mathrm{~g}\right)=-74.85 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(\ell) \\
\Delta_{\mathrm{c}} \mathrm{H}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}, \mathrm{~s}\right)=-5644 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

Similarly, one can mane the enthalpy change based on the type of reaction. A few examples are
Enthalpy of fusion: $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \xrightarrow[273.15 \mathrm{~K}]{ } \mathrm{H}_{2} \mathrm{O}(\ell)$

$$
\Delta_{\mathrm{fus}} \mathrm{H}=6 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Enthalpy of vaporization :

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(1) \xrightarrow[373.15 \mathrm{~K}]{ } \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta_{\text {vap }} \mathrm{H}=40.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { Enthalpy of sublimation: } \mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}_{2}(\mathrm{~g}) \\
& \Delta_{\text {sub }} \mathrm{H}=63.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { Enthalpy of transition: } \mathrm{C} \text { (graphite) } \rightarrow \mathrm{C} \text { (diamond) } \\
& \Delta_{\text {trs }} \mathrm{H}=1.90 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { Enthalpy of neutralization : } \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) \\
& \Delta_{\text {neut }} \mathrm{H}=-57.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { Enthalpy of ionization : } \mathrm{HCN}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \\
& \Delta_{\text {ioniz }} \mathrm{H}=45.17 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Relation between ΔH and $\Delta \mathbf{U}$ of a chemical equation

Since, $H=U+p V$, we have

$$
\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta(\mathrm{pV})=\Delta \mathrm{U}+\left(\Delta \mathrm{v}_{\mathrm{g}}\right) \mathrm{RT}
$$

where $\Delta \mathrm{v}_{\mathrm{g}}$ is the change in the stoichiometric number of gaseous molecules in converting reactants to products and is given as

$$
\Delta \mathrm{v}_{\mathrm{g}}=\sum_{\text {(products) }} \mathrm{v}_{\mathrm{g}, \mathrm{i}}-\sum_{\text {(reactan ts) }} \mathrm{v}_{\mathrm{g}, \mathrm{i}}
$$

rFor a reaction involving condensed phases

$$
\Delta \mathrm{H} \simeq \Delta \mathrm{U}
$$

Bond Enthalpies: Bond enthalpy of a given bond is defined as the average enthalpies required to dissociate the said bond present in different gaseous compounds into free atoms in the gaseous phase. The bond enthalpy may be distinguished from bond dissociation enthalpy which is enthalpy required to dissociate a given bond of some specific molecule. It is possible to construct a table listing the average bond enthalpies of different types of bonds and with the help of this, one can estimate the enthalpy change of a chemical equation involving gaseous species. For example, for a reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

we can write $\Delta \mathrm{H}=+\varepsilon(\mathrm{H}-\mathrm{H})+\varepsilon(\mathrm{Cl}-\mathrm{Cl})-2 \varepsilon(\mathrm{H}-\mathrm{Cl})$

Second Law of thermodynamics

The second law of thermodynamics identifies a state function, called the entropy, which provides a criterion for identifying reversible or irreversible nature of the given process undergone by a system. The entropy of the universe (system + surroundings) increases for irreversible processes whereas it remains constant for reversible processes.
The entropy function has been identified with the disorderliness of the system-larger the disorderliness, larger the entropy of the system. Foe example, for a substance in three states of matter we have
S(gaseous state) $\gg \mathrm{S}$ (liquid state) $>($ solid state $)$
Expression of Entropy Function
For a system which involves transferring infinitesimal heat at constant temperature, the entropy change of the system is given by

$$
\mathrm{dS}=\frac{\mathrm{dq}_{\mathrm{rev}}}{\mathrm{~T}}
$$

For finite heat transferred at constant temperature, we have

$$
\Delta \mathrm{S}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{~T}}
$$

For example, for a pure substance we have

$$
\Delta_{\text {vap }} \mathrm{S}=\frac{\Delta_{\text {vap }} \mathrm{H}}{\mathrm{~T}_{\mathrm{b}}} \text { and } \Delta_{\text {fus }} \mathrm{S}=\frac{\Delta_{\text {fus }} \mathrm{H}}{\mathrm{~T}_{\mathrm{m}}}
$$

where the subscripts vap and fus represent vaporization and fusion, respectively.

Gibbs Function

Gibbs function (or energy) or simply free energy is defined as

$$
\mathrm{G}=\mathrm{H}-\mathrm{TS}
$$

For a process occurring at constant T and P , the change in Gibbs function is given by

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

For a process to be spontaneous, the value of $\Delta \mathrm{G}$ is negative. For a nonspontaneous reaction, $\Delta \mathrm{G}$ is positive. For a reaction at equilibrium, $\Delta \mathrm{G}=0$ and temperature at which the system occurs at equilibrium is given by

$$
\mathrm{T}_{\mathrm{eq}}=\Delta \mathrm{H} / \Delta \mathrm{S}
$$

Pressure-Volume Work

An ideal gas can undergo expansion of compression under isothermal or adiabatic conditions. The expansion ant compression may be carried out under reversible or irreversible conditions. We give below the expressions of $\mathrm{p}-\mathrm{V}$ work under different conditions.

Isothermal p-V Work

In this case, temperature of the system remains constant, ie. $\Delta \mathrm{T}=0$

For irreversible condition: $w=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
For reversible condition: $w=-n R T \operatorname{In}\left(V_{2} / V_{1}\right)$

Adiabatic p-V Work

In this case, heat can neither enter to or leave from the system, i.e. $q=0$. From first law of thermodynamics, it follows that

$$
\Delta \mathrm{U}=\mathrm{w}
$$

where ΔU is given by

$$
\Delta \mathrm{U}=\mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

For a gas undergoing adiabatic irreversible volume change, the expression of work is given by

$$
\mathrm{w}=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

For an ideal gas undergoing adiabatic reversible expansion/compression, we also have

$$
\begin{array}{ll}
& \mathrm{pV}^{\gamma}=\text { constant } \\
& \mathrm{pT}^{\gamma(1-\gamma)}=\text { constant } \\
\text { and } \quad & \mathrm{TV}^{\gamma-1}=\text { constant }
\end{array}
$$

here $\gamma=\mathrm{C}_{\mathrm{p}, \mathrm{m}} / \mathrm{C}_{\mathrm{v}, \mathrm{m}}$ The symbols $\mathrm{C}_{\mathrm{p}, \mathrm{m}}$ and $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ represent molar heat capacities at constant pressure and volume conditions, respectively.
For a monatomic ideal gas:

$$
C_{v, m}=(3 / 2) R ; C_{p, m}=(5 / 2) R ; \text { and } \gamma=5 / 3
$$

For a diatomic ideal gas:

$$
\mathrm{C}_{\mathrm{v}, \mathrm{~m}}=(5 / 2) \mathrm{R} ; \mathrm{C}_{\mathrm{p}, \mathrm{~m}}=(7 / 2) \mathrm{R} ; \text { and } \gamma=7 / 5
$$

Birth of New Red Spot is the Thunderstorm on Jupiter

During the past few months, the astronomers have tracked an emerging second red spot on Jupiter, a growing rival about one-half the diameter of the planet's Great Red Spot. The Hubble Space Telescope has snapped the first detailed pictures of what some observers now call Red Spot Jr.
Astronomers at the Space Telescope Science Institute in Boltimore said this was the first time scientists have witnessed the birth of these huge oval spots, presumably a convective phenomenon like a powerful thunderstorm. The Great spot was already present when the observers first looked with telescope at the planet some 400 years ago. Red Spot Jr. appeared in near-infrared images to be as bright in Jupiter's cloudy atmosphere as its big companion. The size of Red Spot Jr. is half the size of its big companion. The scientists say the new storm might rise higher above the main cloud deck than the older spot.

In a New Light: Jupiter, with its second red spot, in a picture released by NASA.
Current observations, including Hubble pictures taken on May 12 and 18 , show that the smaller red spot is drifting eastward in the Jovian Southern hemisphere and the Great Red Spot is moving westward. They should pass one another in early July. The pictures of the Red Spots are contrast-enhanced images taken in visible light and at near-infrared wave lengths. But the red spots, new and old, are really red.
I

Organic Ghemistry

1. Two isomeric compounds (A) and (B) have the molecular formula $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$. (A) being soluble in water, the solution being alkaline to litmus It does not undergoes diazotization, but show carbylamine reaction and mustard oil reaction, it reacts with acetyl chloride and acetic anhydride. Its product with benzene sulphonyl chloride dissolves in KOH . (B) on the other hand, does not dissolve in water, but undergoes diazotization. Its product with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}$ dissolves in KOH . Its salt undergo hydrolysis in aqueous solution showing an acidic test. What are (A) and (B)?

Sol. As both (A) and (B) give products with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}$, which are soluble in KOH , they contain $-\mathrm{NH}_{2}$ group. (B) can be diazotized so contains $-\mathrm{NH}_{2}$ in the nucleus. (A) cannot be diazotized, hence contains $-\mathrm{NH}_{2}$ in the side chain. The number of carbon and hydrogen atoms also indicates aromatic character.
On the basis of above considerations we may show that (A) is benzylamine and (B) $\mathrm{o}^{-}, \mathrm{m}^{-}$or p -toludine.

Benzylamine

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HOH} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N}^{+} \mathrm{H}_{3} \mathrm{OH}^{-}$

$\overbrace{\mathrm{C}, \mathrm{H}_{5}}^{(\mathrm{B})} \mathrm{Cl}_{2}$

Soluble
2. A hydrocarbon (A) $[\mathrm{C}=90.56 \%$, V.D. $=53]$ was subjected to vigrous oxidation to give a dibasic acid (B). 0.10 g of (B) required 24.10 ml of 0.05 N NaOH for complete neutralization. When (B) was heated strongly with soda-lime it gave benzene. Identify (A) and (B) with proper reasoning and also give their structures.

Sol. Determination of empirical formula of (A) :

Elem ent	$\%$	Ato mic wt.	Relative no. of atoms	Simplest ratio
C	90.56	12	$\frac{90.56}{12}$	$=$
H	9.44	1	$\frac{9.54}{7.55}=1$ or	
			$\frac{7.55}{1}=$	$\frac{9.44}{7.55}=1.25$
			9.44	

The empirical formula of $(A)=\mathrm{C}_{4} \mathrm{H}_{5}$
Empirical formula weight $=48+5=53$
Molecular weight $=$ V.D. $\times 2=53 \times 2=106$
Hence, $\mathrm{n}=\frac{\text { Molecular wt. }}{\text { Empirical wt. }}=\frac{106}{53}=2$
Molecular formula $=2 \times \mathrm{C}_{4} \mathrm{H}_{5}=\mathrm{C}_{8} \mathrm{H}_{10}$
The given equation may be outlined as follows :

(B)

Meq. of dicarboxylic acid $=$ Meq. of NaOH

$$
\frac{0.1 \times 1000}{E}=24.1 \times 0.05
$$

Equivalent of acid $=83$
Molecular wt. $=$ Basicity \times Equivalent weight

$$
=2 \times 83=166
$$

Since (B) on heating with soda-lime gives benzene, the $\mathrm{C}_{6} \mathrm{H}_{4}$ represents to benzene nucleus having two side chains, thus (B) is a benzene dicarboxylic acid. There are three benzene dicarboxylic acids.

Phthalic acid

Isophthalic acid

Terphthalic acid

All the above three acids are obtained by the oxidation of respectively xylenes.

o-xylene

All the above three acids on heating with soda-lime yields only benzene.

Of the three acids, one which on heating gives an anhydride, is o-isomer.

One acid which on nitration gives a mono nitro compounds is p-dicarboxylic acid.

One acid which on nitration gives three mono nitro compounds will be the m -isomer.

3. An organic compound $(\mathrm{A}), \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$, on reacting with aqueous KOH gives (B) and on reaction with alcoholic KOH gives (C) which is also formed on passing vapours of (B) over heated copper. The compound (C) readily decolourises bromine water. Ozonolysis of (C) gives two compounds (D) and (E). Compound (D) reacts with $\mathrm{NH}_{2} \mathrm{OH}$ to gives (F) and the compound (E) reacts with NaOH to give an alcohol (G) and sodium salt (H) of an acid. (D) can also be prepared from propyne on treatment with water in presence of Hg^{++}and $\mathrm{H}_{2} \mathrm{SO}_{4}$. Identify (A) to $\mathrm{H})$ with proper reasoning.

We know that p -alcohol on heating with Cu gives aldehyde while s-alcohol under similar conditions gives ketone. Thus, (B) is a t-alcohol because it, on heating with Cu gives an alkene (C). Since a t alcohol is obtained by the hydrolysis of a t-alkyl halide, hence (A) is t-butyl chloride.

The alkene (C) on ozonolysis gives (D) and (E), hence (C) is not symmetrical alkene. In these compound (E) gives Cannizaro's reaction with NaOH . So, (E) is an aldehyde which does not contain $\alpha-\mathrm{H}$ atom. Hence it is HCHO. Compound (D) can also be prepared by the hydration of propyne in the presence of acidic solution and Hg^{++}.

Hence (D) is acetone and (E) is formaldehyde. Therefore, alkene (C) is 2-methyl propene. $\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}=\mathrm{CH}_{2}$
(D) reacts with hydroxyl amine $\left(\mathrm{NH}_{2} \mathrm{OH}\right)$ to form oxime (F).

Reactions :

(C)

(D)

4. An organic compound $\mathrm{A}, \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{3}$, in dry benzene in the presence of anhydrous AlCl_{3} gives compound B . The compound B on treatment with PCl_{5} followed by reaction with $\mathrm{H}_{2} / \mathrm{Pd}\left(\mathrm{BaSO}_{4}\right)$ gives compound C , which on reaction with hydrazine gives a cyclised compound $\mathrm{D}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2}\right)$. Identify $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . Explain the formation of D from C .
Sol. The given reactions are as follows.

The formation of D from C may be explained as follows.

5. An organic compound (A), $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$, gives positive test with Tollen's reagent, on treatment with alcoholic potassium cyanide, (A) yields the compound (B), $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$. Compound (B) on reduction with $\mathrm{Zn}-\mathrm{Hg}$
and conc. HCl and dehydration gives an unsaturated compound (C), which adds one mol of bromine. The compound (B) can be oxidised with HNO_{3} to a compound (D), having molecular formula $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}$. Compound (D) on heating with KOH undergoes rearrangement and subsequent acidification of rearranged products yields an acidic compound (E), $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$. Identify compounds (A) to (E) giving the reactions involved.

Sol.

(E)

Benzilic acid

Mathematical

This section is designed to give IIT JEE aspirants a thorough grinding \& exposure to variety of possible twists and turns of problems in mathematics that would be very helpful in facing IIT JEE. Each and every problem is well thought of in order to strengthen the concepts and we hope that this section would prove a rich resource for practicing challenging problems and enhancing the preparation level of IIT JEE aspirants.

By : Shailendra Maheshwari
Solutions will be published in next issue

Joint Director Academics, Career Point, Kota

1. Let $y=f(x)$ be a curve satisfying
$\frac{d y}{d x}-y \ln 2=2^{\sin x}(\cos x-1) . \ln 2$, then
(A) y is bounded when $x \rightarrow \infty$
(B) $f(x)=2^{\sin x}+c \cdot 2^{x}$, where c is an arbitrary constant
(C) $y=2^{\sin x}, y$ is bounded when $x \rightarrow \infty$
(D) $f(x)=2^{\text {sin x }}$ does not have any solution if y is not bounded.
2. In a right angled triangle the length of its hypotenuse is four times the length of the perpendicular drawn from its orthocentre on the hypotenuse. The acute angles of the triangle can be
(A) $\frac{\pi}{6}, \frac{\pi}{3}$
(B) $\frac{\pi}{8}, \frac{3 \pi}{8}$
(C) $\frac{\pi}{6}, \frac{\pi}{4}$
(D) $\frac{\pi}{12}, \frac{5 \pi}{12}$
3. Let $a, b \in \mathrm{R}$ such that $0<a<1$ and $0<b<1$. The values of a and b such that the complex number $z_{1}=-a+i, z_{2}=-1+b i$ and $z_{3}=0$ form an equilateral triangle are
(A) $2-\sqrt{3}, \sqrt{3}$
(B) $2-\sqrt{3}, 2-\sqrt{3}$
(C) $\sqrt{3}, 2-\sqrt{3}$
(D) None of these
4. If c_{1} is a fixed circle and c_{2} is a variable circle with fixed radius. The common transverse tangents to c_{1} and c_{2} are perpendicular to each other. The locus of the centre of variable circle is :
(A) circle
(B) ellipse
(C) hyperbola
(D) parabola
5. The length of the latus rectum of the parabola $169\left\{(x-1)^{2}+(y-3)^{2}\right\}=(5 x-12 y+17)^{2}$ is -
(A) $\frac{14}{13}$
(B) $\frac{56}{13}$
(C) $\frac{28}{13}$
(D) None
6. Evaluate : $\int \frac{\cos 5 x+\cos 4 x}{1-2 \cos 3 x} d x$
7. Find all the real values of a, for which the roots of the equation $x^{2}-2 x-a^{2}+1=0$ lie between the roots of equation

$$
x^{2}-2(a+1) x+a(a-1)=0
$$

8. Given the base of a triangle and the sum of its sides prove that the locus of the centre of its incircle is an ellipse.
9. A bag contains 7 tickets marked with the number 0 , $1,2,3,4,5,6$ respectively. A ticket is drawn and replaced. Then the chance that after 4 drawings the sum of the numbers drawn is 8 , is -
10. A polynomial in x of degree greater than 3 leaves remainders 2,1 and -1 when divided by $(x-1),(x+2)$ and $(x+1)$ respectively. What would be the remainder if the polynomial is divided by $\left(x^{2}-1\right)(x+2)$?

Attitude and confidence level carries you forward or backward. It is the attitude that matters. It is as \| important as your expertise or knowledge. Don't ever
\| let negative feelings overtake you or come near you.
| Always say to you, "I shall do my best and succeed," ||
Any negative suggestions adversely affect attitudes. ||

38 |

MATHEMATICAL CHALLENGES

SOLUTION FOR JUNE ISSUE (SET \# 2)

1. $1^{\text {st }}$ box can be filled in 4 ways.

Next each box can be filled in 3 ways (except the ball of colour in previous box).
Hence the required no. of ways $=4 \times 3^{5}=972$
2. Given $|A| \neq 0 ; \quad \mathrm{AA}^{-1}=\mathrm{I} \Rightarrow\left(\mathrm{AA}^{-1}\right)^{\mathrm{T}}=\mathrm{I}^{\mathrm{T}}$
$\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=\mathrm{I} \quad$ (as A is symmetric)
$\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{A}=\mathrm{I}$
so by the definition of inverse $A^{-1}=\left(A^{-1}\right)^{T}$
Hence A^{-1} is also symmetric.
3. The normal to hyperbola at the point
$\mathrm{P}(a \sec \theta, b \tan \theta)$ is

$$
a x \cos \theta+\text { by } \cot \theta=a^{2}+b^{2}
$$

If it passes through (h, k) then
$a h \cos \theta+b k \cot \theta=a^{2}+b^{2}$
Let $z=e^{i \theta}=\cos \theta+i \sin \theta$ then put $\cos \theta=\frac{z^{2}+1}{2 z}$
and $\cot \theta=\mathrm{i}\left(\frac{z^{2}+1}{z^{2}-1}\right)$ in the equation (1).
$a h z^{4}+2\left(i b k-\left(a^{2}+b^{2}\right)\right) z^{3}$

$$
+2\left(i b k+\left(a^{2}+b^{2}\right)\right) z-a h=0
$$

$z_{1}, z_{2}, z_{3}, z_{4}$ are its four solutions so
$\Sigma z_{1} z_{2}=0=\Sigma \mathrm{e}^{\mathrm{i}\left(\theta_{1}+\theta_{2}\right)}=0$
$\Sigma\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)=0$
Hence $\Sigma \cos \left(\theta_{1}+\theta_{2}\right)=\Sigma \sin \left(\theta_{1}+\theta_{2}\right)=0$
4. Planes are

$$
\begin{equation*}
-x-2 y-2 z+9=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
4 x-3 y+12 z+13=0 \tag{2}
\end{equation*}
$$

The plane bisecting the angle b / w these planes containing origin is

$$
\begin{equation*}
\frac{-x-2 y-2 z+9}{3}=+\frac{4 x-3 y+12 z+13}{13} \tag{3}
\end{equation*}
$$

i.e. $\quad 25 x+17 y+62 z-78=0$

If θ be the angle between (1) \& (3) then
$\cos \theta=\frac{61}{\sqrt{4758}}$
$\Rightarrow \tan \theta=\frac{\sqrt{1037}}{61}<1$
Hence plane given by (3) is bisecting the acute angle between given two planes also. Hence the conclusion holds true.
5. Let $\mathrm{I}_{2}=\int_{f(a)}^{f(b)}\left(\left(f^{-1}(y)\right)^{2}-a^{2}\right) d y$

$$
\begin{array}{ll}
\text { Let } \quad f^{-1}(y)=x \\
\Rightarrow \quad f(x)=y \\
\mathrm{I}_{2}=\int_{a}^{b}\left(x^{2}-a^{2}\right) f^{\prime}(x) d x
\end{array}
$$

Using by parts

$$
\begin{aligned}
\mathrm{I}_{2} & =\left(\left(x^{2}-a^{2}\right) f(x)\right)_{a}^{b}-\int_{a}^{b} 2 x f(x) d x \\
& =\left(b^{2}-a^{2}\right) f(b)-\int_{a}^{b} 2 x f(x) d x \\
& =\int_{a}^{b} 2 x f(b) d x-\int_{a}^{b} 2 x f(x) d x \\
& =\int_{a}^{b} 2 x(f(b)-f(x)) d x
\end{aligned}
$$

Hence $\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{1}{2}$
6. $y+\frac{1}{y}=2$
$\Rightarrow y=1$
$x+\frac{1}{x}=\sqrt{\sqrt{5}+2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}$
$=(\sqrt{5}+2)-2=\sqrt{5}$

$$
\begin{aligned}
& x^{4}+\frac{1}{x^{4}}=5-2 \\
& \Rightarrow x^{8}+\frac{1}{x^{8}}=9-2 \\
& \Rightarrow x^{16}+\frac{1}{x^{16}}=49-2 \\
& \Rightarrow 47+1+1=49
\end{aligned}
$$

7. Let the radius of S_{2} is r

$$
\begin{aligned}
& \sqrt{2} r+r+6=\sqrt{2} 6 \\
& r=6\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right) \\
& =6(3-2 \sqrt{2}) \\
& \quad=18-12 \sqrt{2}
\end{aligned}
$$

8. $S_{1}=2+4+6+\ldots .+120$

$$
\begin{aligned}
& =\frac{60}{2}(2+120) \\
& =30 \times 122=3660 \\
\mathrm{~S}_{2} & =7+14+21+\ldots . .+119 \\
& =\frac{17}{2}(7+119) \\
& =17 \times 63=1071 \\
\mathrm{~S}_{3} & =14+28+\ldots .+102 \\
& =\frac{8}{2}(14+112) \\
& =4 \times 126=504
\end{aligned}
$$

$$
\text { Ans. }=\frac{120 \times 121}{2}-3660-1071+504
$$

$$
=7260-4731+504
$$

$$
=2529+504
$$

$$
=3033
$$

9. Here $\mathrm{F}(x)$ is even function

$$
\begin{aligned}
& \text { so } f(x)=\mathrm{F}(-x)=\mathrm{F}(x) \\
& \Rightarrow f(-x)=f(x) \\
& \quad g(x)=-\mathrm{F}(x)=-f(x)=-f(-x)
\end{aligned}
$$

1. Suppose a function $f(x)$ satisfies the following conditions $f(x+y)=\frac{f(x)+f(y)}{1+f(x) \cdot f(y)} \quad \forall x, y$ and $f^{\prime}(0)=1$. Also $-1<f(x)<1$ for all $x \in \mathrm{R}$, then find the set of values of x where $f(x)$ is differentiable and also find the value of $\lim _{x \rightarrow \infty}[f(x)]^{x}$.

Sol. First put $x=0, y=0 \Rightarrow f(0)=0$
Now, $f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{x \rightarrow 0} \frac{\frac{f(x)+f(h)}{1+f(x) \cdot f(h)}-f(x)}{h}$
$=\lim _{x \rightarrow 0}\left\{\frac{f(h)-f(0)}{h-0}\right\}\left[\frac{1-\{f(x)\}^{2}}{-1+f(x) \cdot f(h)}\right]$
$=1-\left\{f^{2}(x)\right\}$
integrating we get $\frac{1}{2} \ln \left[\frac{1+f(x)}{1-f(x)}\right]=x+c$
$\Rightarrow f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
clearly $f(x)$ is differentiable for all $x \in \mathrm{R}$.
$\lim _{x \rightarrow \infty}[f(x)]^{x}=\lim _{x \rightarrow \infty}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{x}=e^{\lim _{x \rightarrow \infty}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)} x=1$
2. If A be the area bounded by $y=f(x), y=f^{-1}(x)$ and the line $4 x+4 y-5=0$ where $f(x)$ is a polynomial of $2^{\text {nd }}$ degree passing through the origin and having maximum value of $\frac{1}{4}$ at $x=1$, then find A.

Sol. Let $f(x)=a x^{2}+b x$
given that $\frac{1}{4}=a+b$

$$
\begin{equation*}
0=2 a+b \tag{1}
\end{equation*}
$$

from (1) and (2)

$$
a=-\frac{1}{4}, b=\frac{1}{2}
$$

$f(x)=\frac{2 x-x^{2}}{4}$
since $4 x+4 y-5=0$ passes through $\mathrm{A}\left(1, \frac{1}{4}\right)$ and
$\mathrm{B}\left(\frac{1}{4}, 1\right)$ so area bounded is $\mathrm{OAB}=2 \mathrm{OAC}$
$=2[\operatorname{ar}(\mathrm{OCP})+\operatorname{ar}(\mathrm{CAQP})-\operatorname{ar}(\mathrm{OAQ})]$
$=2\left[\frac{1}{2} \times \frac{5}{8} \times \frac{5}{8}+\frac{1}{2}\left(\frac{5}{8}+\frac{1}{4}\right) \frac{3}{8}-\int_{0}^{1} \frac{2 x-x^{2}}{4} d x\right]$
$=\frac{37}{96}(\text { unit })^{2}$
3. Let f be a polynomial function such that
$f(x) \cdot f(y)+2=f(x)+f(y)+f(x y) \forall x \in \mathrm{R}^{+}$, $y \in \mathrm{R}^{+} \cup\{0\}$ and $f(x)$ is one one $\forall x \in \mathrm{R}^{+}$with $f(0)=1, f^{\prime}(1)=2$, then find the area bounded between the curve $y=x^{2}$ and $y=g(x)$ where $g(x)=\frac{2}{f(x)}$ and x -axis and also find the no. of points of nondifferentiability of $h(x)=\min \left\{g(x), x^{2}\right.$, $|1-|x||\}$
Sol. Let $f(x) \cdot f(y)+2=f(x)+f(y)+f(x y)$
putting $x=y=1$
$f(1) \cdot f(1)+2=3 f(1) \Rightarrow f(1)=2,1$
f is given one-one and $f(0)=1$
$\Rightarrow f(1)=2$
replacing y by $\frac{1}{x}$ in (1) than

$$
\begin{aligned}
& f(x) \cdot f\left(\frac{1}{x}\right)+2=f(x)+f\left(\frac{1}{x}\right)+2 \\
& \Rightarrow f(x)=1+x^{n} \\
& \text { also } f(1)=2 \Rightarrow n=2 \\
& \Rightarrow f(x)=1+x^{2}
\end{aligned}
$$

Now to find the area,
Area $=2 \int_{0}^{1}\left(\frac{2}{1+x^{2}}-x^{2}\right) d x=2\left(\frac{2 \pi}{4}-\frac{1}{3}\right)=\pi-\frac{2}{3}$
clearly by graph you can find there is 6 points of non differentiability.
4. Given a point P on the circumference of the circle $|z|=1$, and vertices $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots . ., \mathrm{A}_{n}$ of an inscribed regular polygon of n sides. Prove using complex numbers that
$\left(\mathrm{PA}_{1}\right)^{2}+\left(\mathrm{PA}_{2}\right)^{2}+$ \qquad $+\left(\mathrm{PA}_{n}\right)^{2}$ is a constant.

Sol. Without loss of generality we can take P as $1+0 \mathrm{i}$.
i.e., $\mathrm{P} \equiv \mathrm{C}$ is 0

Let $\mathrm{A}_{r} \equiv \mathrm{C}$ is $\theta_{r}, \mathrm{r}=1,2, \ldots \ldots, n$.
$\mathrm{PA}_{r}=\left|\operatorname{Cis} \theta_{r}-\operatorname{Cis} 0\right|=\left|\left(\cos \theta_{r}-1\right)+i\left(\sin \theta_{r}\right)\right|$
$\mathrm{PA}_{r}{ }^{2}=\left(\cos \theta_{r}-1\right)^{2}+\left(\sin \theta_{r}\right)^{2}$
$=2-2 \cos \theta_{r}$
$\Rightarrow \sum_{r=1}^{n}\left(P A_{r}\right)^{2}=2 \mathrm{n}-2 \sum_{r=1}^{n} \cos \theta_{r}$
Now, $\sum_{r=1}^{n} \cos \theta_{r}=\operatorname{Re}\left[\sum_{r=1}^{n} \operatorname{Cis} \theta_{r}\right]$

$$
=\operatorname{Re}\left[e^{i \theta_{1}}+e^{i \theta_{2}}+\ldots \ldots .+e^{i \theta_{n}}\right]
$$

$=\operatorname{Re}\left[\frac{e^{i \theta_{1}}\left(1-\left(e^{i \frac{2 \pi}{n}}\right)^{n}\right)}{1-e^{i \frac{2 \pi}{n}}}\right]$
$\because \theta_{2}-\theta_{1}=\theta_{3}-\theta_{2}=\ldots . .=\theta_{n}-\theta_{n-1}=\frac{2 \pi}{n}$
$=\operatorname{Re}\left[\frac{e^{i \theta_{1}}(1-1)}{1-e^{i \frac{2 \pi}{n}}}\right]=0$
Hence, $\sum_{r=1}^{n}\left(P A_{r}\right)^{2}=2 n=$ constant.
5. Find the set of values of ' a ' for which minimum value of $x^{3}-6 a x^{2}+9 a^{2} x+7, x \in[-1,2]$ is 3 .
Sol. Let $f(x)=x^{3}-6 a x^{2}+9 a^{2} x+7$
$a \neq 0$, otherwise $f(x)=x^{3}+7$, which is always increasing and hence $\min f=f(-1)=6 \neq 3$.
Now $f^{\prime}(x)=3 x^{2}-12 a x+9 a^{2}=0$ for stationary points $\Rightarrow x=a, 3 a$
CaseI : $a>0$
$\Rightarrow-1$ is always in the left of a .
Case I. (a) : $2 \leq a$, then
$3=\min f=f(-1)=-1-6 a-9 a^{2}+7$
$\Rightarrow 3 a^{2}+2 a-1=0$, no admissible value of a is obtained.

Case I. (b) : $-1<a<2<3 a$
i.e., $\frac{2}{3}<a<2$, then
$3=\min f=\min \{\mathrm{f}(-1), \mathrm{f}(2)\}$
$=\min \left\{-1-6 a-9 a^{2}+7,8-24 a+18 a^{2}+7\right\}$
$=-1-6 a-9 a^{2}+7$
as $-1-6 a-9 a^{2}+7<8-24 a+18 a^{2}+7$
i.e., $3 a^{2}-2 a+1>0$, which is true

Hence $3=-1-6 a-9 a^{2}+7$
$\Rightarrow a=-1$ or $\frac{1}{3}$, none of which is possible.
Case I(c) : $3 a \leq 2$

$$
\begin{aligned}
& \Rightarrow 3=\min f=\min \{f(-1), f(3 a)\} \\
& =\left\{-1-6 a-9 a^{2}+7,18 a^{3}+7\right\} \\
& =-1-6 a-9 a^{2}+7 \text {, } \\
& \text { as } 18 a^{3}+77-1-6 a-9 a^{2}+7 \\
& \text { i.e., } 18 a^{3}+9 a^{2}+6 a+170
\end{aligned}
$$

which is true as $a>0$. Hence $a=-1$ or $\frac{1}{3}$,
in which $a=\frac{1}{3}$ is permissible.
Case II : $a<0$
$\Rightarrow 2$ is always in the right of a
Case II (a) $a \leq-1$
$\Rightarrow 3=\min f=f(-1)$
$\Rightarrow a=-1$, as $a=\frac{1}{3}$
Hence $a=-1$ is one possibility

Case II (b) $3 \mathrm{a} \leq-1<\mathrm{a}$
$\Rightarrow-1$, as $\mathrm{a}=\frac{1}{3}$
$\Rightarrow 3=\min \mathrm{f}=\mathrm{f}(\mathrm{a})=\mathrm{a}^{3}-6 \mathrm{a}^{3}+9 \mathrm{a}^{3}+7$
$\Rightarrow 4 a^{3}=-4 \Rightarrow a=-1$, not possible
Case II(c) $-1<3 \mathrm{a} \Rightarrow 3=\min \mathrm{f}=\min \{\mathrm{f}(-1), \mathrm{f}(\mathrm{a})\}$

$$
=\min \left\{-1-6 a-9 a^{2}+7,4 a^{3}+7\right\}
$$

$$
=4 a^{3}+7
$$

as $4 a^{3}+7<-1-6 a-9 a^{2}+7$
as $(a+1)^{2}(4 a+1)<0$. Hence $a=-1$, not possible
\Rightarrow Hence $\mathrm{a}=-1$ or $\mathrm{a}=1 / 3$
6. Find the point inside a triangle from which the sum of the squares of distance to the three side is minimum. Find also the minimum value of the sum of squares of distance.
Sol. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the lengths of the sides of the Δ and x, y, z are length of perpendicular from the points on the sides BC, CA and AB respectively, we have to minimise : $\Delta=x^{2}+y^{2}+z^{2}$
we have, $\frac{1}{2} \mathrm{ax}+\frac{1}{2} \mathrm{by}+\frac{1}{2} \mathrm{cz}=\Delta$
$\Rightarrow \mathrm{ax}+\mathrm{by}+\mathrm{cz}=2 \Delta$

where Δ is the area of $\triangle \mathrm{ABC}$.
We have the identity :
$\Rightarrow\left(x^{2}+y^{2}+z^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)-(a x+b y+c z)^{2}$

$$
=(a x-b y)^{2}+(b y-c z)^{2}+(c z-a x)^{2}
$$

$\Rightarrow\left(x^{2}+y^{2}+z^{2}\right)\left(a^{2}+b^{2}+c^{2}\right) \geq(a x+b y+c z)^{2}$
$\Rightarrow\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2} \geq 4 \Delta^{2}\right.$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{-2} \geq \frac{4 \Delta^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}$
Equality holds only when

$$
\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{y}}{\mathrm{~b}}=\frac{\mathrm{z}}{\mathrm{c}}=\frac{\mathrm{ax}+\mathrm{by}+\mathrm{cz}}{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}=\frac{2 \Delta}{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}
$$

\therefore The minimum value of Δ is ;

$$
\frac{4 \Delta^{2}}{a^{2}+b^{2}+c^{2}}=\frac{4(s-a)(s-b)(s-c) s}{a^{2}+b^{2}+c^{2}}
$$

- After firing 5 billion billion zinc ions at a speed \| of 18,460 miles per second (30,000 kilometers II per second) at lead, the German scientists at Darmstadt, Germany created a single atom of \| 112 protons (ununbium) that survived for one third ($1 / 3$) of a millisecond.
\| - If an electric current is passed through a solution or molten salt (the electrolyte), ions will migrate to the electrodes: positive ions (cations) to the negative electrode (cathode) and negative ions (anions) to the positive electrodes (anions).
- The positron was discovered in 1932 by the U.S. physicist Carl Anderson at California Institute of Technology, United States.
- Fritz Haber developed chlorine gas for use by the Germans in World War I. (Unable to live with his, his wife commited suicide in 1915).
- The flatulence of a single sheep could power a small truck for 25 miles (40 kilometers) a day. The digestive process produces methane gas, which can be burned as fuel.
- Cesiums has a diameter of 0.0000002 inches (0.0000005 millimeter).
- Hydrogen atoms with no neutrons make up 99.985\% percent of all hydrogen atoms. The remaining 0.015% percent contain one neutron.
- The very first shell of an atom (innermost) can hold only up to two electrons.
- The element with the lowest boiling point is also helium at -452.07 degrees Fahrenheit (-268.93 degrees Celsius
- The word "atom" comes from the Greek word atomos, meaning "uncut."
- The first and relatively pure atom of tantalum was produced by von Bolton in 1907.

3-DIMENSIONAL GEOMETRY

Mathematics Fundamentals

Coordinates of a point :

x-coordinate $=$ perpendicular distance of P from $y z$-plane
y-coordinate $=$ perpendicular distance of P from
$z x$-plane
z-coordinate $=$ perpendicular distance of P from $x y$-plane
Coordinates of a point on the coordinate planes and axes:

$$
\begin{array}{lll}
y z \text {-plane } & : & x=0 \\
z x \text {-plane } & : & y=0 \\
x y \text {-plane } & : & z=0 \\
x \text {-axis } & : & y=0, z=0 \\
y \text {-axis } & : & y=0, x=0 \\
z \text {-axis } & : & x=0, y=0
\end{array}
$$

Distance between two points :

If $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ are two points, then distance between them

$$
\mathrm{PQ}=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

Coordinates of division point :

Coordinates of the point dividing the line joining two points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $\mathrm{m}_{1}: \mathrm{m}_{2}$ are
(i) in case of internal division

$$
\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, \frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}\right)
$$

(ii) in case of external division

$$
\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}, \frac{m_{1} z_{2}-m_{2} z_{1}}{m_{1}-m_{2}}\right)
$$

Note: When m_{1}, m_{2} are in opposite sign, then division will be external.

Coordinates of the midpoint:

When division point is the mid-point of PQ , then ration will be $1: 1$; hence coordinates of the midpoint of PQ are

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Coordinates of the general point :

The coordinates of any point lying on the line joining points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ may be taken as

$$
\left(\frac{k x_{2}+x_{1}}{k+1}, \frac{k y_{2}+y_{1}}{k+1}, \frac{k z_{2}+z_{1}}{k+1}\right)
$$

which divides PQ in the ratio $k: 1$. This is called general point on the line PQ .

Division by coordinate planes :

The ratios in which the line segment PQ joining $\mathrm{P}\left(x_{1}\right.$, $\left.y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ is divided by coordinate planes are as follows :
(i) by $y z$-plane $-x_{1} / x_{2}$ ratio
(ii) by $z x$-plane
$-y_{1} / y_{2}$ ratio
(iii) by $x y$-plane

$$
-z_{1} / z_{2} \text { ratio }
$$

Coordinates of the centroid :

(i) If $\left(x_{1}, y_{1}, z_{1}\right)$; $\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ are vertices of a triangle then coordinates of its centroid are

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)
$$

(ii) If $\left(x_{r}, y_{r}, z_{r}\right) ; r=1,2,3,4$ are vertices of a tetrahedron, then coordinates of its centroid are

$$
\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}\right)
$$

Direction cosines of a line [Dc's] :
The cosines of the angles made by a line with positive direction of coordinate axes are called the direction cosines of that line.
Let α, β, γ be the angles made by a line AB with positive direction of coordinate axes then $\cos \alpha, \cos$ $\beta, \cos \gamma$ are the direction cosines of AB which are generally denoted by $l, \mathrm{~m}, \mathrm{n}$. Hence

$$
l=\cos \alpha, m=\cos \beta, n=\cos \gamma
$$

x-axis makes $0^{\circ}, 90^{\circ}$ and 90° angles with three coordinate axes, so its direction cosines are $\cos 0^{\circ}$, $\cos 90^{\circ}, \cos 90^{\circ}$ i.e. $1,0,0$. Similarly direction cosines of y-axis and z-axis are $0,1,0$ and $0,0,1$ respectively. Hence
dc's of x-axis $=1,0,0$
dc's of y-axis $=0,1,0$
dc's of z-axis $=0,0,1$
Relation between dc's

$$
\therefore l^{2}+m^{2}+n^{2}=1
$$

Direction ratios of a line [DR's] :

Three numbers which are proportional to the direction cosines of a line are called the direction ratios of that line. If a, b, c are such numbers which are proportional to the direction cosines $l, \mathrm{~m}, \mathrm{n}$ of a line then a, b, c are direction ratios of the line. Hence

$$
\begin{aligned}
\Rightarrow l & = \pm \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& m= \pm \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n= \pm \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

Direction cosines of a line joining two points :

Let $\equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q} \equiv\left(x_{2}, y_{2}, z_{2}\right)$; then
(i) dr's of PQ : $\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right),\left(z_{2}-z_{1}\right)$
(ii)dc's of PQ : $\frac{x_{2}-x_{1}}{P Q}, \frac{y_{2}-y_{1}}{P Q}, \frac{z_{2}-z_{1}}{P Q}$
i.e., $\frac{x_{2}-x_{1}}{\sqrt{\sum\left(x_{2}-x_{1}\right)^{2}}}, \frac{y_{2}-y_{1}}{\sqrt{\Sigma\left(x_{2}-x_{1}\right)^{2}}}, \frac{z_{2}-z_{1}}{\sqrt{\sum\left(x_{2}-x_{1}\right)^{2}}}$

Angle between two lines :

Case I. When dc's of the lines are given
If $l_{1}, \mathrm{~m}_{1}$, and $l_{2}, \mathrm{~m}_{2} \mathrm{n}_{2}$ are dc's of given two lines, then the angle θ between them is given by

- $\cos \theta=l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}$
- $\quad \sin \theta=\sqrt{\left(\ell_{1} m_{2}-\ell_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} \ell_{2}-n_{2} \ell_{1}\right)^{2}}$

The value of $\sin \theta$ can easily be obtained by the following form :

$$
\sin \theta=\sqrt{\left|\begin{array}{ll}
\ell_{1} & m_{1} \\
\ell_{2} & m_{2}
\end{array}\right|^{2}+\left|\begin{array}{ll}
m_{1} & n_{1} \\
m_{2} & n_{2}
\end{array}\right|^{2}+\left|\begin{array}{ll}
n_{1} & \ell_{1} \\
n_{2} & \ell_{2}
\end{array}\right|^{2}}
$$

Case II. When dr's of the lines are given If a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are dr's of given two lines, then the angle θ between them is given by

$$
\begin{aligned}
& \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\
& \sin \theta=\frac{\sqrt{\Sigma\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)^{2}}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}} \sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}
\end{aligned}
$$

Conditions of parallelism and perpendicularity of two

 lines :Case I. When dc's of two lines AB and CD , say ℓ_{1}, m_{1}, n_{1} and ℓ_{2}, m_{2}, n_{2} are known
$\mathrm{AB} \| \mathrm{CD} \Leftrightarrow \ell_{1}=\ell_{2}, m_{1}=m_{2}, n_{1}=n_{2}$
$\mathrm{AB} \perp \mathrm{CD} \Leftrightarrow \ell_{1} \ell_{2}+m_{1} m_{2}+n_{1} n_{2}=0$.
Case II. When dr's of two lines AB and CD, say : a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are known
$\mathrm{AB} \| \mathrm{CD} \Leftrightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\mathrm{AB} \perp \mathrm{CD} \Leftrightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$.

Area of a triangle :

Let $\mathrm{A}\left(x_{1}, y_{1}, z_{1}\right) ; \mathrm{B}\left(x_{2}, y_{2}, z_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}, z_{3}\right)$ are vertices of a triangle. Then

$$
\text { Now } \quad \begin{aligned}
\sin \mathrm{B} & =\frac{\sqrt{\Sigma\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}}}{\sqrt{\Sigma a_{1}^{2}} \sqrt{\Sigma a_{2}^{2}}} \\
& =\frac{\sqrt{\Sigma\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}}}{A B \cdot B C}
\end{aligned}
$$

$$
\therefore \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2} \mathrm{AB} \cdot \mathrm{BC} \sin \mathrm{~B}
$$

$$
=\frac{1}{2} \sqrt{\Sigma\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}}
$$

Projection of a line segment joining two points on a line :
Let PQ be a line segment where $\mathrm{P} \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q} \equiv\left(x_{2}, y_{2}, z_{2}\right)$; and AB be a given line with dc's as l, m, n. If $P^{\prime} \mathrm{Q}^{\prime}$ be the projection of $P Q$ on $A B$, then

$$
\mathrm{P}^{\prime} \mathrm{Q}^{\prime}=\mathrm{PQ} \cos \theta
$$

where θ is the angle between PQ and AB . On replacing the value of $\cos \theta$ in this, we shall get the following value of $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$.

$$
\mathrm{P}^{\prime} \mathrm{Q}^{\prime}=l\left(x_{2}-x_{1}\right)+m\left(y_{2}-y_{1}\right)+n\left(z_{2}-z_{1}\right)
$$

Projection of PQ on x-axis : $a=\left|x_{2}-x_{1}\right|$
Projection of PQ on y-axis : $b=\left|y_{2}-y_{1}\right|$
Projection of PQ on z-axis : $c=\left|z_{2}-z_{1}\right|$
Length of line segment $\mathrm{PQ}=\sqrt{a^{2}+b^{2}+c^{2}}$

* If the given lines are $\frac{x-\alpha}{\ell}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ and $\frac{x-\alpha^{\prime}}{\ell^{\prime}}=\frac{y-\beta^{\prime}}{m^{\prime}}=\frac{z-\gamma^{\prime}}{n^{\prime}}$, then condition for intersection is

$$
\begin{aligned}
& \text { dr's of } \mathrm{AB}=x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1} \\
& =a_{1}, b_{1}, c_{1} \text { (say) } \\
& \text { and } \quad \mathrm{AB}=\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \\
& \text { dr's of } \mathrm{BC}=x_{3}-x_{2}, y_{3}-y_{2}, z_{3}-z_{2} \\
& =a_{2}, b_{2}, c_{2} \text { (say) } \\
& \text { and } \quad \mathrm{BC}=\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}
\end{aligned}
$$

- If the given lines are $\frac{x-\alpha}{\ell}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ and $\frac{x-\alpha^{\prime}}{\ell^{\prime}}=\frac{y-\beta^{\prime}}{m^{\prime}}=\frac{z-\gamma^{\prime}}{n^{\prime}}$, then condition for intersections is
$\left|\begin{array}{ccc}\alpha-\alpha^{\prime} & \beta-\beta^{\prime} & \gamma-\gamma^{\prime} \\ \ell & m & n \\ \ell & m^{\prime} & n^{\prime}\end{array}\right|=0$
Plane containing the above two lines is
$\left|\begin{array}{ccc}x-\alpha & y-\beta & z-\gamma \\ \ell & m & n \\ \ell^{\prime} & m^{\prime} & n^{\prime}\end{array}\right|=0$

Condition of coplanarity if both the lines are in general form:

Let the lines be
$a x+b y+c z+d=0=a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}$
and $\alpha x+\beta y+\gamma z+\delta=0=\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z+\delta^{\prime}$
These are coplanar if $\left|\begin{array}{cccc}a & b & c & d \\ a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime} \\ \alpha & \beta & \gamma & \delta \\ \alpha^{\prime} & \beta^{\prime} & \gamma^{\prime} & \delta^{\prime}\end{array}\right|=0$

Reduction of non-symmetrical form to symmetrical form:

Let equation of the line in non-symmetrical form be' $a_{1} x+b_{1} y+c_{1} z+d_{1}=0 ; a_{2} x+b_{2} y+c_{2} z+d_{2}=0$.
To find the equation of the line in symmetrical form, we must know (i) its direction ratios (ii) coordinates of any point on it.

- Direction ratios : Let ℓ, m, n be the direction ratios of the line. Since the line lies in both the planes, it must be perpendicular to normals of both planes. So
$a_{1} \ell+b_{1} m+c_{1} n=0 ; a_{2} \ell+b_{2} m+c_{2} n=0$
From these equations, proportional values of ℓ, m, n can be found by cross-multiplication as

$$
\frac{\ell}{b_{1} c_{2}-b_{2} c_{1}}=\frac{m}{c_{1} a_{2}-c_{2} a_{1}}=\frac{n}{a_{1} b_{2}-a_{2} b_{1}}
$$

- Point on the line : Note that as ℓ, m, n cannot be zero simultaneously, so at least one must be non-zero. Let $a_{1} b_{2}-a_{2} b_{1} \neq 0$, then the line cannot be parallel to $x y$-plane, so it intersect it. Let it intersect $x y$-plane in $\left(x_{1}, y_{1}, 0\right)$. Then
$a_{1} x_{1}+b_{1} y_{1}+d_{1}=0$ and $a_{2} x_{1}+b_{2} y_{1}+d_{2}=0$
Solving these, we get a point on the line. Then its equation becomes

$$
\begin{gathered}
\frac{x-x_{1}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y-y_{1}}{c_{1} a_{2}-c_{2} a_{1}}=\frac{z-0}{a_{1} b_{2}-a_{2} b_{1}} \\
\text { or } \frac{x-\frac{b_{1} d_{2}-b_{2} d_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y-\frac{d_{1} a_{2}-d_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{c_{1} a_{2}-c_{2} a_{1}}=\frac{z-0}{a_{1} b_{2}-a_{2} b_{1}}
\end{gathered}
$$

Note : If $\ell \neq 0$, take a point on yz -plane as $\left(0, t_{1}, z_{1}\right)$ and if $m \neq 0$, take a point on xz-plane as $\left(x_{1}, 0, z_{1}\right)$

- Skew lines : The straight lines which are not parallel and non-coplanar i.e. non-intersecting are called skew lines.
If $\Delta=\left|\begin{array}{ccc}x-\alpha & y-\beta & z-\gamma \\ \ell & m & n \\ \ell^{\prime} & m^{\prime} & n^{\prime}\end{array}\right| \neq 0$, the lines are skew.
Shortest distance : Suppose the equation of the lines
are $\frac{x-\alpha}{\ell}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$
and $\frac{x-\alpha^{\prime}}{\ell^{\prime}}=\frac{y-\beta^{\prime}}{m^{\prime}}=\frac{z-\gamma^{\prime}}{n^{\prime}}$. Then
S.D. $=\frac{\left(\alpha-\alpha^{\prime}\right)\left(m n^{\prime}-m^{\prime} n\right)+\left(\beta-\beta^{\prime}\right)\left(n \ell^{\prime}-n^{\prime} \ell\right)\left(\ell m^{\prime}-\ell^{\prime} m\right)}{\sqrt{\Sigma\left(m n^{\prime}-m^{\prime} n\right)^{2}}}$
$=\left|\begin{array}{ccc}\alpha-\alpha^{\prime} & \beta-\beta^{\prime} & \gamma-\gamma^{\prime} \\ \ell & m & n \\ \ell^{\prime} & m^{\prime} & n^{\prime}\end{array}\right|$

Some results for plane and straight line:

(i) General equation of a plane :

$$
a x+b y+c z+d=0
$$

where a, b, c are dr's of a normal to this plane.

(ii) Equation of a straight line :

$$
\text { General form : } \left.\begin{array}{c}
a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
a_{2} x+b_{2} y+c_{2} z+d_{2}=0
\end{array}\right\}
$$

(In fact it is the straight line which is the intersection of two given planes)

Symmetric form : $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
where $\left(x_{1}, y_{1}, z_{1}\right)$ is a point on this line and a, b, c are its dr's

(iii) Angle between two planes :

If θ be the angle between planes $a_{1} x+b_{1} y \quad c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$, then
$\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$
(In fact angle between two planes is the angle between their normals.)
Further above two planes are

$$
\begin{gathered}
\text { parallel } \Leftrightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\text { perpendicular } \Leftrightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0
\end{gathered}
$$

PROGRESSION \& MATHEMATICAL INDUCTION

Arithmetic Progression (AP)

AP is a progression in which the difference between any two consecutive terms is constant. This constant difference is called common difference (c.d.) and generally it is denoted by d .
Standard form: Its standard form is

$$
a+(a+d)+(a+2 d)+\ldots \ldots \ldots . .
$$

General term :

$$
\mathrm{T}_{n}=a+(n-1) d
$$

If $\mathrm{T}_{n}=l$ then it should be noted that
(i) $d=\frac{\ell-a}{n-1}$
(ii) $n=1+\frac{\ell-a}{d}$

Note: a, b, c are in $\mathrm{AP} \Leftrightarrow 2 b=a+c$

Sum of \mathbf{n} terms of an AP :

$S_{n}=\frac{n}{2}(a+\ell)$
where l is last term (nth term). Replacing the value of l, it takes the form

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Arithmetic Mean :

(i) If A be the AM between two numbers a and b , then $A=\frac{1}{2}(a+b)$
(ii) The AM of n numbers a_{1}, a_{2}, \qquad

$$
=\frac{1}{n}\left(a_{1}+a_{2}+\ldots \ldots \ldots+a_{n}\right)
$$

(iii) \mathbf{n} AM's between two numbers

If $A_{1}, A_{2}, \ldots . ., A_{n}$ be n AM's between a and b then a $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots . ., \mathrm{A}_{n}, b$ is an AP of $(n+2)$ terms. Its common difference d is given by

$$
\mathrm{T}_{n+2}=b=a+(n+1) \mathrm{d} \Rightarrow d=\frac{b-a}{n+1}
$$

so $\mathrm{A}_{1}=a+d, \mathrm{~A}_{2}=a+2 d, \ldots . ., \mathrm{A}_{n}=a+n d$.
Sum of n AM's between a and b
$\therefore \quad \Sigma \mathrm{A}_{n}=n(\mathrm{~A})$

Assuming numbers in AP :

(i) When number of terms be odd

Three terms : $\quad a-d, a, a+d$
Five terms : $a-2 d, a-d, a, a+d, a+2 d$
(ii) When number of terms be even

Four terms: $a-3 d, a-d, a+d, a+3 \mathrm{~d}$
Six terms : $a-5 d, a-3 d, a-d, a+d, a+3 d$,

$$
a+5 d
$$

Geometrical Progression (GP) :

A progression is called a GP if the ratio of its each term to its previous term is always constant. This constant ratio is called its common ratio and it is generally denoted by r .
Standard form : Its standard form is

$$
a+a r+a r^{2}+\ldots \ldots \ldots
$$

General term : $\mathrm{T}_{n}=a r^{n-1}$
a, b, c are in GP $\Leftrightarrow \frac{b}{a}=\frac{c}{b} \Leftrightarrow b^{2}=a c$

Sum of \boldsymbol{n} terms of a GP :

The sum of n terms of a GP $a+a r+a r^{2}+\ldots \ldots .$. is given by
$\mathrm{S}_{n}=\left\{\begin{array}{l}\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a-\ell r}{1-r}, \text { when } r<1 \\ \frac{a\left(r^{n}-1\right)}{r-1}=\frac{\ell r-a}{r-1}, \text { when } r>1\end{array}\right.$
when $\ell=\mathrm{T}_{n}$.
Sum of an infinite GP :
(i) When $\mathrm{r}>1$, then $r^{n} \rightarrow \infty$, so $S_{n} \rightarrow \infty$ Thus when $r>1$, the sum S of infinite $\mathrm{GP}=\infty$
(ii) When $|r|<1$, then $r^{n} \rightarrow 0$, so

$$
\mathrm{S}=\frac{a}{1-r}
$$

(iii) When $r=1$, then each term is a so $\mathrm{S}=\infty$.

Geometric Mean :

(i) If G be the GM between a and b then

$$
\mathrm{G}=\sqrt{a b}
$$

(ii) G.M. of n numbers $a_{1}, a_{2} \ldots ., a_{n}=\left(a_{1} a_{2} a_{3} \ldots . . a_{n}\right)^{1 / n}$
(iii) n GM's between two numbers
$\Rightarrow r=(b / a)^{1 / n+1}$

Product of GM's $=(a b)^{n / 2}=G^{n}$

Assuming numbers in GP :

(i) When number of terms be odd

Three terms : $a / r, a, a r$
Five terms : $a / r^{2}, a / r, a, a r, a r^{2}$
(ii) When number of terms be even

Four terms : $a / r^{3}, a / r, a r, a r^{3}$
Six terms : $a / r^{5}, a / r^{3}, a / r, a r, a r^{3}, a r^{5}$

Arithmetic-Geometric Progression :

If each term of a progression is the product of the corresponding terms of an AP and a GP, then it is called arithmetic-geometric progression (AGP). For example:
$a,(a+d) r,(a+2 d) r^{2} \ldots \ldots$.
$\mathrm{T}_{n}=[a+(n-1) d] r^{n-1}$
$\mathrm{S}_{n}=\frac{a}{1-r}+\frac{d r\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{[a+(n-1) d] r^{n}}{1-r}$
$\mathrm{S}_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}$
$|r|<1$

Harmonic Progression :

A progression is called a harmonic progression (HP) if the reciprocals of its terms are in AP.

Standard form : $\frac{1}{a}+\frac{1}{a+d}+\frac{1}{a+2 d}+$. \qquad
General term : $T_{n}=\frac{1}{a+(n-1) d}$
$\therefore a, b, c$ are in $\mathrm{HP} \Leftrightarrow \frac{2}{b}=\frac{1}{a}+\frac{1}{c} \Leftrightarrow b=\frac{2 a c}{a+c}$

Harmonic Mean :

(i) If H be a HM between two numbers a and b, then

$$
H=\frac{2 a b}{a+b} \text { or } \frac{2}{H}=\frac{1}{a}+\frac{1}{b}
$$

(ii) To find n HM's between a and b we first find n AM's between $1 /$ a and $1 / b$, then their reciprocals will be the required HM's.

Relations between AM, GM and HM :

$\mathrm{G}^{2}=\mathrm{AH}$
$\mathrm{A}>\mathrm{G}>\mathrm{H}$, when $a, b>0$.
If A and AM and GM respectively between two positive numbers, then those numbers are

$$
A+\sqrt{A^{2}-G^{2}}, A-\sqrt{A^{2}-G^{2}}
$$

Some Important Results :

- If number of terms in an AP/GP/HP is odd then its mid term is the AM/GM/HM between the first and last term.
- If number of terms in an AP/GP/HP is even the $\mathrm{AM} / \mathrm{GM} / \mathrm{HM}$ of its two middle terms is equal to the AM/GM/HM between the first and last term.
- a, b, c are in AP, GP and $\mathrm{HP} \Leftrightarrow a=b=c$
- a, b, c are in AP and $\mathrm{HP} \Rightarrow a, b, c$ are in GP.
- a, b, c are in AP
$\Leftrightarrow \frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ are in AP. $\Leftrightarrow b c, c a, a b$ are in HP.
- a, b, c are in GP $\Leftrightarrow a^{2}, b^{2}, c^{2}$ are in GP.
- a, b, c are in GP \Leftrightarrow loga, logb, logc are in AP.
- a, b, c are in GP $\Leftrightarrow \log _{\mathrm{a}} \mathrm{m} \log _{\mathrm{b}} \mathrm{m}, \log _{\mathrm{c}} \mathrm{m}$ are in HP.
- $a, b, c d$ are in GP $\Leftrightarrow a+b, b+c, c+d$ are in GP.
- a, b, c are in $\mathrm{AP} \Leftrightarrow \alpha^{a}, \alpha^{b}, \alpha^{c}$ are in GP $\left(\alpha \in \mathrm{R}_{0}\right)$

Principle of Mathematical Induction :

It states that any statement $\mathrm{P}(\mathrm{n})$ is true for all positive integral values of n if
(i) $\mathrm{P}(1)$ is true i.e., it is true for $n=1$.
(ii) $\mathrm{P}(\mathrm{m})$ is true $\Rightarrow \mathrm{P}(m+1)$ is also true
i.e., if the statement is true for $n=m$ then it must also be true for $n=m+1$.

Some Formula based on the Principle of Induction :

- $\Sigma n=1+2+3+\ldots \ldots .+n=\frac{n(n+1)}{2}$
(Sum of first n natural numbers)
- $\Sigma(2 n-1)=1+3+5+\ldots+(2 n-1)=n^{2}$
(Sum of first n odd numbers)
- $\Sigma 2 n=2+4+6+$ \qquad $+2 n=n(n+1)$
(Sum of first n even numbers)
- $\Sigma n^{2}=1^{2}+2^{2}+3^{2}+\ldots \ldots . .+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(Sum of the squares of first n natural numbers)
- $\Sigma \mathrm{n}^{3}=1^{3}+2^{3}+3^{3}+\ldots \ldots .+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$
(Sum of the cubes of first n natural numbers)

Application in Solving Objective Question :

For solving objective question related to natural numbers we find out the correct alternative by negative examination of this principle. If the given statement is $\mathrm{P}(n)$, then by putting $n=1,2,3, \ldots .$. in $\mathrm{P}(n)$, we decide the correct answer.
We also use the above formulae established by this principle to find the sum of n terms of a given series. For this we first express T_{n} as a polynomial in n and then for finding S_{n}, we put Σ before each term of this polynomial and then use above results of $\Sigma n, \Sigma n^{2}, \Sigma n^{3}$ etc.

Based on New Pattern

IIT-JEE 2012

XtraEdge Test Series \# 3

Time : 3 Hours

Syllabus : Physics : Calorimetry, K.T.G., Thermodynamics, Heat Transfer, Thermal expansion, Transverse wave, Sound wave, Doppler's effect, Atomic Structure, Radioactivity, X-ray, Nuclear Physics, Matter Waves, Photoelectric Effect, Practical Physics. Chemistry : Chemical Equilibrium, Acid Base, Ionic Equilibrium, Classification \& Nomenclature, Isomerism , Hydrogen Family, Boron Family \& Carbon Family, S-block elements, Nitrogen Family, Oxygen Family, Halogen Family \& Noble Gas, Salt Analysis, Metallurgy, Co-ordination Compounds, Transitional Elements. Mathematics: Point, Straight line, Circle, Parabola, Ellipse, Hyperbola, Vector, 3-D, Probability, Determinants, Matrices.

Instructions : [Each subject contain]
Section-I : Question 1 to 8 are multiple choice questions with only one correct answer. $+\mathbf{3}$ marks will be awarded for correct answer and -1 mark for wrong answer.

Section - II : Question 9 to 13 are multiple choice questions with multiple correct answer. $+\mathbf{3}$ marks will be awarded for correct answer and No Negative marks for wrong answer.

Section - III : Question 14 to 18 are passage based single correct type questions. +3 marks will be awarded for correct answer and -1 mark for wrong answer

Section - IV: Question 19 to 27 are Numerical Response Question (single digit Ans. type) +4 marks will be awarded for correct answer and No Negative marks for wrong answer.

PHYSICS

Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

1. Three bodies A, B and C of masses m, m and $\sqrt{3} \mathrm{~m}$ respectively are supplied heat at a constant rate. The change in temperature θ versus time t graph for A, B and C are shown by I, II and III respectively. If their specific heat capacities are $\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}}$ and S_{C} respectively then which of the following relation is correct? (Initial temperature of body is $0^{\circ} \mathrm{C}$) -

(A) $\mathrm{S}_{\mathrm{A}}>\mathrm{S}_{\mathrm{B}}>\mathrm{S}_{\mathrm{C}}$
(B) $\mathrm{S}_{\mathrm{B}}=\mathrm{S}_{\mathrm{C}}<\mathrm{S}_{\mathrm{A}}$
(C) $\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}=\mathrm{S}_{\mathrm{C}}$
(D) $\mathrm{S}_{\mathrm{B}}=\mathrm{S}_{\mathrm{C}}>\mathrm{S}_{\mathrm{A}}$
2. A composite cylinder is made of two different materials A and B of thermal conductivities K_{A} and K_{B}. The dimensions of the cylinder are as shown in the figure. The thermal resistance of the cylinder between the two end faces is -

(A) $\frac{\ell}{\pi r^{2}\left(\mathrm{~K}_{\mathrm{A}}+3 \mathrm{~K}_{\mathrm{B}}\right)}$
(B) $\frac{\ell}{\pi \mathrm{r}^{2}}\left(\frac{1}{\mathrm{~K}_{\mathrm{A}}}+\frac{3}{\mathrm{~K}_{\mathrm{B}}}\right)$
(C) $\frac{\ell}{\pi \mathrm{r}^{2}}\left(\frac{1}{\mathrm{~K}_{\mathrm{A}}}+\frac{4}{\mathrm{~K}_{\mathrm{B}}}\right)$
(D) $\frac{\ell}{\pi r^{2}\left(\mathrm{~K}_{\mathrm{A}}+4 \mathrm{~K}_{\mathrm{B}}\right)}$
3. Two stationary detector D_{1} and D_{2} and a moving source of sound are arranged as shown in the figure. The beats will be observed by -

Wall
(A) both D_{1} and D_{2}
(B) only D_{1}
(C) only D_{3}
(D) none of these
4. The intensity level of a point isotropic source is 40 dB at a distance of 5 m from the source. The minimum distance at which the sound source will be inaudible is -
(A) 50 m
(B) 500 m
(C) 100 m
(D) infinite
5. The radius of the shortest orbit in a one-electron system is 18 pm . It may be -
(A) hydrogen
(B) deuterium
(C) He^{+}
(D) Li^{++}
6. An electron with kinetic energy E eV collides with a hydrogen atom in the ground state. The collision will be elastic -
(A) for all values of E
(B) for $\mathrm{E}<10.2 \mathrm{eV}$
(C) for $\mathrm{E}<13.6 \mathrm{eV}$
(D) only for $\mathrm{E}<3.4 \mathrm{eV}$
7. The absorption coefficient of x-rays for a given wavelength is larger for -
(A) lithium
(B) copper
(C) aluminium
(D) lead
8. When a photon falls on a metal, it is absorbed through a distance before ejection of photoelectron. This distance is given by -
(A) $1 \AA$
(B) $10^{4} \AA$
(C) $100 \AA$
(D) $10^{8} \AA$

Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and no negative marks.
9. The adjoining figure shows the graph of $\frac{1}{\rho}$ vs T for an ideal gas undergoing a reversible process. Here ρ represents the density, while T represents the temperature 0 -

(A) the process represents isobaric compression
(B) the internal energy of the gas decreases
(C) work is done by the gas on the surroundings
(D) heat is absorbed by the gas during the process.
10. Two conducting rods of the same cross-section are connected end to end, while the temperature at A and C are maintained at $\theta_{\mathrm{A}}=300^{\circ} \mathrm{C}$ and $\theta_{\mathrm{C}}=0^{\circ} \mathrm{C}$, respectively. There is no loss of heat from the sides of the rods. Let θ_{B} be the temperature of function B -

(A) if $\theta_{\mathrm{B}}=200^{\circ} \mathrm{C}$ in the steady state, the conductivities of the rods are equal
(B) if $\theta_{\mathrm{B}}<50^{\circ} \mathrm{C}$ in the steady state, $\mathrm{K}_{\mathrm{I}}<\mathrm{K}_{\text {II }}$
(C) if $\theta_{\mathrm{B}}>200^{\circ} \mathrm{C}$ in the steady state, $\mathrm{K}_{\mathrm{I}}>\mathrm{K}_{\text {II }}$
(D) if $\theta_{\mathrm{B}}=100^{\circ} \mathrm{C}$ in the steady state, $\mathrm{K}_{\mathrm{I}}<\mathrm{K}_{\text {II }}$

Here $\mathrm{K}_{\mathrm{I}}, \mathrm{K}_{\mathrm{II}}$ denote the thermal conductivities of the rods I and II respectively.
11. Select the correct statement -
(A) The waves created in metal may be transverse waves
(B) The waves created in metal may be longitudinal waves
(C) The waves created in gas must be transverse mechanical waves
(D) The waves created in gas may be transverse mechanical waves
12. The maximum kinetic energy of photon electrons ejected from a photometer when it is irradiated with radiation of wavelength 400 nm is 1 eV . If the threshold energy of surface is 1.9 eV -
(A) the maximum K.E. of photoelectrons when it is irradiated with 500 nm photon will be 0.42 eV
(B) the maximum K.E. in case (A) will be 1.725 eV
(C) the longest wavelength which will eject photoelectrons is nearly 610 nm
(D) All of the above

13 The shortest wavelength produced in an x-ray tube operated at 0.5 million volt is -
(A) depends on the target material
(B) $0.025 \AA$ approximately
(C) double of the shortest wavelength produced with the tube operating at 1 million volt
(D) depends only on the target material and not on the operating voltage

This section contains 2 paragraphs; passage- I has 2 multiple choice questions (No. $14 \& 15$) and passageII has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

Passage \# 1 (Ques. 14 to 15)

In successive radioactive transformation a radioactive nuclei decays to another nuclei which in turn decays to another stable nuclei, as shown below
$\mathrm{A} \xrightarrow[\lambda_{1}]{ } \mathrm{B} \xrightarrow[\lambda_{2}]{ } \mathrm{C}$ (stable)
$\lambda_{1} \& \lambda_{2}$ are the decay constants for the transformations respectively. Initially number of nuclei of A that are present are N_{0} and at any instant ' t ' number of nuclei of B are
$\mathrm{N}_{2}=\frac{\lambda_{1} \mathrm{~N}_{0}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{1} \mathrm{t}}\left[1-\mathrm{e}^{-\left(\lambda_{2}-\lambda_{1}\right) \mathrm{t}}\right]$
14. The number of nuclei of C at any instant ' t ' is -
(A) $\mathrm{N}_{3}=\mathrm{N}_{0}\left(1+\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{2} \mathrm{t}}-\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{1} \mathrm{t}}\right)$
(B) $\mathrm{N}_{3}=\mathrm{N}_{0}\left(1-\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{2} \mathrm{t}}+\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{1} \mathrm{t}} \mathrm{a}\right)$
(C) $\mathrm{N}_{3}=\mathrm{N}_{0}\left(1-\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{2} \mathrm{t}}-\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{1} \mathrm{t}}\right)$
(D) $\mathrm{N}_{3}=\mathrm{N}_{0}\left(\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{2} \mathrm{t}}-\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-\lambda_{1} \mathrm{t}}\right)$
15. At radioactive equilibrium the rate of production of nuclei C is -
(A) $\frac{\lambda_{2} \lambda_{1}}{\lambda_{2}+\lambda_{1}} \mathrm{~N}_{0} \mathrm{e}^{-\lambda_{1} \mathrm{t}}\left[1-\mathrm{e}^{-\left(\lambda_{2}+\lambda_{1}\right) \mathrm{t}}\right]$
(B) $\frac{\lambda_{2} \lambda_{1}}{\lambda_{2}-\lambda_{1}} \mathrm{~N}_{0} \mathrm{e}^{-\lambda_{1} \mathrm{t}}\left[1-\mathrm{e}^{-\left(\lambda_{2}-\lambda_{1}\right) \mathrm{t}}\right]$
(C) $\frac{\lambda_{2} \lambda_{1}}{\lambda_{2}-\lambda_{1}} \mathrm{~N}_{0} \mathrm{e}^{-\lambda_{1} \mathrm{t}}\left[1+\mathrm{e}^{-\left(\lambda_{2}-\lambda_{1}\right) \mathrm{t}}\right]$
(D) $\frac{\lambda_{2} \lambda_{1}}{\lambda_{2}-\lambda_{1}} \mathrm{~N}_{0} \mathrm{e}^{-\lambda_{2} \mathrm{t}}\left[1-\mathrm{e}^{-\left(\lambda_{2}-\lambda_{1}\right) \mathrm{t}}\right]$

Passage \# 2 (Ques. 16 to 18)

Surface temperature of Sun has to be estimated for this most probable energy E for photons emitted by a black body of temperature T is found. Intensity is proportional to $\mathrm{E}^{5} \mathrm{e}^{-\mathrm{E} / \mathrm{KT}} \quad$ i.e., $I \propto E^{5} e^{-E / k T}$.
The Balmer lines of hydrogen span the visible frequency range. The human eye has evolved to be most sensitive to sunlight.
If n_{E} is the number of photons with energy E then distribution of n_{E} is given by

$$
\mathrm{P}\left(\mathrm{n}_{\mathrm{E}}\right) \sim \frac{\mathrm{I}(\mathrm{E})}{\mathrm{E}}
$$

16. The most probable energy E for photons emitted by a black body of temperature T is -
(A) KT
(B) 2 KT
(C) 3 KT
(D) 4 KT
17. The maximum energy of the Balmer lines which fall in the visible range is -
(A) 1.9 eV
(B) 3.4 eV
(C) 5.2 eV
(D) 6.4 eV
18. If the human eye is sensitive to sunlight, the maximum surface temperature of sun is -
(A) $0.5 \times 10^{4} \mathrm{~K}$
(B) $2 \times 10^{4} \mathrm{~K}$
(C) $3 \times 10^{4} \mathrm{~K}$
(D) $4 \times 10^{4} \mathrm{~K}$

This section contains 9 questions ($\mathbf{Q} .19$ to 27). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9 . The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are $6,0,9$ and 2 , respectively, then the correct darkening of bubbles will look like the following :

19. Two small sound sources A and B emit pure sinusoidal waves in phase. If the speed of sound is $350 \mathrm{~m} / \mathrm{s}$, for what minimum frequency does destructive interference occur at point P. Answer
 is in the form of $\mathrm{n} \times 10^{2}$ Hz . What is n ?
20. A cylinder contains 0.15 kg of hydrogen. The cylinder is closed by a piston supporting a weight of 74 kg (see fig.), $\mathrm{n} \times 10^{3} \mathrm{~J}$ amount of heat is given to lift the weight by 1.2 m ? The process should be assumed isobaric, the heat capacity of the vessel and the external pressure should be neglected. Find n (n is single digit.)

21. Upon expansion the pressure of a gas rose linearly. Quantity of heat supplied for this is $x \cdot y \times 10^{5} J$, where x and y are single digit number find x. The gas is monotonic.

22. The photoelectric current in a vacuum photocell is reduced to zero when its cesium ($\phi=1.89 \mathrm{eV}$) electrode is irradiated by radiation of wavelength $\lambda=2700 \AA$ and a decelerating voltage $\mathrm{V}=3 \mathrm{~V}$ is applied. Then the magnitude of outer contact potential difference is $\mathrm{N} \times 10^{-1} \mathrm{~V}$, then the value of N is -
23. The De-Broglie wavelength of electron in the third Bohr orbit of hydrogen in $10^{-9} \mathrm{~m}$ is (given radius of first Bohr orbit is $5.3 \times 10^{-11} \mathrm{~m}$) -
24. The binding energy of an electron in the ground state of He atom is equal to 24.6 eV . The energy required to remove both the electrons (if the ionisation energy of hydrogen is 13.6 eV) is $\mathrm{N} \times 10^{1} \mathrm{eV}$ then N is equal to -
25. The nucleus ${ }_{92} \mathrm{U}^{238}$ is unstable against α-decay with a half-life of about 4.5×10^{9} years. Then the kinetic energy of the emitted α-particle in MeV is [m $\left({ }_{92} \mathrm{U}^{238}\right)=238.05081 \mathrm{u} ; \mathrm{m}\left({ }_{2} \mathrm{He}^{4}\right)=4.00260 \mathrm{u} ; \mathrm{m}(-$ $\left.\left.{ }_{90} \mathrm{Th}^{234}\right)=234.04363 \mathrm{u}\right]$
26. A polonium $\left({ }_{84} \mathrm{P}_{0}{ }^{209}\right)$ nucleus transforms into one of lead $\left({ }_{82} \mathrm{~Pb}^{207}\right)$ by emitting an α-particle, then the kinetic energy of the α-particle in MeV is $\left[\mathrm{m}\left(\mathrm{P}_{0}\right)=209.98297 \mathrm{u} ; \mathrm{m}(\mathrm{Pb})=205.97446\right.$ $\mathrm{m}(\alpha$-particle $)=4.00260 \mathrm{u}]$
27. A nucleus at rest undergoes a decay emitting an α particle of de-Broglie wavelength $5.76 \times 10^{-15} \mathrm{~m}$. If the mass of daughter nucleus is 223.610 amu and that of α-particle is 4.002 amu . The mass of the parent nucleus is 22 X amu then find X appearing in the number 22X.
$\left(1 \mathrm{amu}=931.47 \mathrm{MeV} / \mathrm{c}^{2}\right)$

CHEMISTRY

Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

1. Which out of the following gases is obtained when ammonium dichromate is heated -
(A) Oxygen
(B) Ammonia
(C) Nitrogen
(D) Nitrous oxide
2. The solubility products of $\mathrm{Al}(\mathrm{OH})_{3}$ and $\mathrm{Zn}(\mathrm{OH})_{2}$ are 8.5×10^{-23} and 1.8×10^{-14} respectively. If $\mathrm{NH}_{4} \mathrm{OH}$ is added to a solution containing Al^{3+} and Zn^{2+} ions, then substance precipitated first is -
(A) $\mathrm{Al}(\mathrm{OH})_{3}$
(B) $\mathrm{Zn}(\mathrm{OH})_{2}$
(C) Both together
(D) None at all
3. Out of following carbon chains which one is different from other three chains -
(A)

(B)

(C)

(D)

4. Removal of FeWO_{4} is not possible by gravity separation because -
(A) FeWO_{4} is having wetting characteristics
(B) FeWO_{4} is having magnetic property
(C) FeWO_{4} having density almost that of SnO_{2}
(D) None of these
5. $\mathrm{A} \xrightarrow{\mathrm{D}} \mathrm{B}+\mathrm{C}$ for this reaction it is given that $\begin{array}{llll}\text { time } & \mathrm{O} & \mathrm{t} & \infty \\ \text { vol of reagent } & \mathrm{V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3}\end{array}$ If the reagent reacts with B, C and D which is the correct expression for k
(A) $\mathrm{k}=\frac{1}{\mathrm{t}} \ell \ln \frac{\mathrm{V}_{3}-\mathrm{V}_{1}}{\mathrm{~V}_{2}-\mathrm{V}_{3}}$
(B) $\mathrm{k}=\frac{1}{\mathrm{t}} \ln \frac{\mathrm{V}_{1}-\mathrm{V}_{3}}{\mathrm{~V}_{3}-\mathrm{V}_{2}}$
(C) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{\ell n} \frac{\mathrm{V}_{3}-\mathrm{V}_{1}}{\mathrm{~V}_{3}-\mathrm{V}_{2}}$
(D) $k=\frac{1}{t} \ln \frac{V_{3}-V_{1 / 2}}{V_{3}-V_{2}}$
6. A colourless solid (A) on heating evolve CO_{2} and give a white residue (B) soluble in water. (B) also give CO_{2} when treated with dilute acid. (A) is -
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(B) NaHCO_{3}
(C) CaCO_{3}
(D) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
7. The name of the compound

(A) bicyclo [2.2.1] octane
(B) bicyclo [1.1.1] octane
(C) 1, 4-bismethylenecyclohexane
(D) bicyclo [2.2.2] octane
8. Atomic radii of alkali metals (M) follow the order : $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}$ but ionic radii in aqueous solution follow the reverse order $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}$. The reason for the reversed order is -
(A) Increase in the ionisation energy
(B) Decrease in the metallic bond character
(C) Increase in the electropositive character
(D) Decrease in the amount of hydration

Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and no negative marks.
9. When KI solution is added dropwise to the Bi^{3+} solution a black ppt of (X) is obtained. On adding excess of KI solution orange coloured solution (Y) is obtained. On addition of water again black ppt is reappeared. The (Y) in water on heating it turns orange ppt (Z). Then X, Y, and Z are-
$(\mathrm{A})(\mathrm{X}) \equiv \mathrm{BiI}_{3}$
(B) $(\mathrm{Y}) \equiv\left[\mathrm{BiI}_{4}\right]$
(C) $(\mathrm{Z}) \equiv \mathrm{BiOI}$
(D) $(\mathrm{Y}) \equiv \mathrm{BiI}_{6}{ }^{-}$
10. For the CrO_{4}^{2-} and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ which of the following is/are correct?
(A) In $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$, two tetrahedral CrO_{4}^{2-} units are joined together by bridge O atom
(B)

$\theta>109.5^{\circ} ; \mathrm{d}_{1}<\mathrm{d}_{2}$
(C) The reduction potential of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acidic medium is greater than the reduction potential of CrO_{4}^{2-} in the acidic medium
(D) $\left[\mathrm{CrO}_{8}\right]^{3-}$ (peroxochromate) is peramagnetic in nature
11. Which of the following is/are correct?
(A) The efficiency of a solid catalyst depends upon its surface area
(B) Catalyst operates by providing alternate path for the reaction that involves lower activation energy
(C) Catalyst lowers the activation energy of forward reaction only without affecting the activation energy of backward reaction
(D) Catalyst does not affect the overall enthalpy change of the reaction
12. Which of the following statement is/are correct?
(A) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is tetrahedral, paramagnetic, sp^{3} hybridised
(B) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is square planar, diamagnetic, dsp^{2} hybridised
(C) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is tetrahedral, diamagnetic sp^{3} hybridised
(D) $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is tetrahedral, paramagnetic, sp^{3} hybridised
13. Which of the following hydrides are covalent and polymeric?
(A) Ca
(B) Ba
(C) Be
(D) Mg

This section contains 2 paragraphs; passage- I has 2 multiple choice questions (No. $14 \& 15$) and passageII has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

Passage \# 1 (Ques. 14 \& 15)

pH scale was designed by Sorensen to represent $\left[\mathrm{H}^{+}\right]$concentrations is a suitable manner. For a given solution,
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
and $\mathrm{pH}+\mathrm{pOH}=\mathrm{pK}_{\mathrm{w}}$
where $\mathrm{pK}_{\mathrm{w}}=-\log \mathrm{K}_{\mathrm{w}}\left(\mathrm{K}_{\mathrm{w}}=\right.$ Ionic product of water $)$ Nature of salt solutions and their resulting pH are determined by comparing the strength of acid \& base used for salt formation.

Acid	Base	Nature
strong	strong	neutral $\left(\mathrm{pH}=1 / 2 \mathrm{pK}_{\mathrm{w}}\right)$
strong	weak	acidic $\left(\mathrm{pH}<1 / 2 \mathrm{pK}_{\mathrm{w}}\right)$
weak	strong	basic $\left(\mathrm{pH}>1 / 2 \mathrm{pK}_{\mathrm{w}}\right)$
weak	weak unpredictable	

14. pH of NaNO_{3} solution at $\mathrm{t}^{\circ} \mathrm{C}$ was found to be 6 . find the pH of KCl solution at a temperature ($\mathrm{t}-65^{\circ} \mathrm{C}$)
(A) 7
(B) 8
(C) 6
(D) None of these
15. Nature of AlCl_{3} solution is \qquad while \qquad solution is basic in nature.
(A) Acidic, NaCl
(B) Acidic, $\mathrm{CH}_{3} \mathrm{COONa}$
(C) Basic, $\mathrm{CH}_{3} \mathrm{COONa}$
(D) Basic, NaCl

Passage \# 2 (Ques. 16 to 18)

Chemically cis and trans isomers are separated by Grinberg's method. In this method cis and trans isomer reacts separately with the ligands (L) containing two donor atoms separated by two to four other atoms. When the ligands (L) attacks cis positions then five or six member ring is produced. With trans isomer L acts as monodentate ligand.
16. With cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ when $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$ reacts the product is (X). The (X) is -
(A)

(B)

(C)

(D)

17. With cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ reacts at the faster rate with $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ than that of trans - $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ because -
(A) With cis isomer of $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ produces five member cyclic ring which is stable
(B) With cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ when $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ react the entropy change of the reaction is positive
(C) With cis -isomer when $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$ react there is vicinity of the attacking nucleophile with the incipient leaving group but with transisomer when $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$ react there is steric crowding.
(D) All of the above are correct
18. Which of the following species are optically inactive?
(A)

(B)

(C)

(D) All of the given species are optically inactive

This section contains 9 questions (Q .19 to 27). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9 . The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are $6,0,9$ and 2 , respectively, then the correct darkening of bubbles will look like the following :

19. In molecule of nitro glycerin the number of N atoms present are \qquad
20. Find total number of stereocentre.

21. Calculate pH of a buffer solution prepared by dissolving 16.8 gram $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 500 ml of an aqueous solution containing 5.475 gram HCl .
$\left(\mathrm{Ka}\right.$ for $\mathrm{HCO}_{3}{ }^{-}=5.63 \times 10^{-11} ; \log 5.63=0.75 ; \log$ $0.0566=-1.25$).
22. For Cu^{2+}, the spin only magnetic moment, $\mu=\sqrt{n_{1}}$ the value of n_{1} is \qquad
23. How many no. of the following are a chiral
(I)

(II)

(III)

(IV)

24. Borazene, $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$, is isoelectronic and iso structural with benzene molecules, how many isotopic disubstituted borazene molecules, $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{4} \mathrm{X}_{2}$, are possible without changing the fundamental ring structure?
25. In molecule of nitro glycerin the number of N atoms present are \qquad
26. Benitoite is represented as $\mathrm{BaTi}\left[\mathrm{Si}_{3} \mathrm{O}_{\mathrm{n}}\right]$, the value of n is \qquad
27. In can acid buffer solution, $[\mathrm{HA}]=0.01(\mathrm{M})$ and $[\mathrm{NaA}]=0.1(\mathrm{M})$ and for HA, $\mathrm{K}_{\mathrm{a}}=10^{-5}$. In the given buffer solution the degree of hydrolysis, and $\mathrm{h} \times 10^{7}$ is \qquad

MATHEMATICS

Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

1. Let ABCD is a convex quadrilateral in which $\angle \mathrm{BAC}=50^{\circ}, \angle \mathrm{CAD}=60^{\circ}, \angle \mathrm{CBD}=30^{\circ} \&$ $\angle \mathrm{BDC}=25^{\circ}$. If E is the point of intersection of AC $\& \mathrm{BD}$ then $\angle \mathrm{AEB}$ equals -
(A) 65°
(B) 75°
(C) 85°
(D) 95°
2. $\mathrm{p}_{1}, \mathrm{p}_{2}$ are lengths of perpendicular from foci on tangent to ellipse and p_{3}, p_{4} are perpendiculars from extremities of major axis and p from centre of ellipse on same tangent, then $\frac{p_{1} p_{2}-p^{2}}{p_{3} p_{4}-p^{2}}$ equals
(A) e
(B) $\sqrt{\mathrm{e}}$
(C) e^{2}
(D) None of these
3. Let $f(x)=\left|\begin{array}{ccc}x^{2}+1 & x-1 & x-2 \\ 2 x & x-3 & x+4 \\ 3 x-1 & 4 x & 8 x-2\end{array}\right|-a x^{4}-b x^{3}-c x^{2}$ $-d x-e$ and $f(x)=0$ for all x, then equation $(a+4 e-3 c) x^{2}+(b-2 e-a) x+3 c-2 e-b=0$ has a root equal to -
(A) $\frac{e}{4 a}$
(B) $\frac{4 b}{e}$
(C) $\frac{4 a}{b}$
(D) $\frac{b}{4 a}$
4. If $\vec{a}=x_{1} \hat{i}+x_{2} \hat{j}+x_{3} \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ $\forall x_{1}, x_{2}, x_{3} \in\{1,2,3, \ldots 10\}$, then number of vectors \vec{a} such that $\vec{a} \cdot \vec{b}=0$ is -
(A) 20
(B) 50
(C) 55
(D) 40
5. If $A, B \& C$ are matrices of order 2 such that $|A|=\frac{1}{4},|B|=9,|C|=2$, then $\left|(3 A C)(2 B)^{-1}\right|$ is equal to -
(A) $\frac{1}{8}$
(B) $\frac{3}{4}$
(C) 2
(D) 6
6. A three digit number is selected at random from the set of all three digit numbers. The probability that the number selected has atleast two digits same is -
(A) $\frac{24}{25}$
(B) $\frac{9}{25}$
(C) $\frac{18}{25}$
(D) $\frac{7}{25}$
7. If $0 \leq x \leq 4$ and $0 \leq y \leq 4$ then probability of a point randomly selected from given intervals to lie inside or on the parabola $y^{2}=x$ is -
(A) $\frac{3}{16}$
(B) $\frac{5}{16}$
(C) $\frac{2}{3}$
(D) $\frac{1}{3}$
8. If $\sum_{n=1}^{n} \alpha_{n}=a n^{2}+b n$, where a, b are constants and $\alpha_{1}, \alpha_{2}, \alpha_{3} \in\{1,2,3 \ldots \ldots . .9\}$ and $25 \alpha_{1}, 37 \alpha_{2}, 49 \alpha_{3}$ be three digit number then $\left[\begin{array}{ccc}\alpha_{1} & \alpha_{2} & \alpha_{3} \\ 5 & 7 & 9 \\ 25 \alpha_{1} & 37 \alpha_{2} & 49 \alpha_{3}\end{array}\right]$ is equal to -
(A) $\alpha_{1}+\alpha_{2}+\alpha_{3}$
(B) $\alpha_{1}-\alpha_{2}+\alpha_{3}$
(C) 7
(D) 0

Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and no negative marks.
9. Two circles C_{1} and C_{2} intersect at two distinct points $\mathrm{P} \& \mathrm{Q}$ in a plane. Let a line passing through P meets circle $C_{1} \& C_{2}$ in A and B respectively. Let Y is mid point of $A B$ and QY meets circle C_{1} and C_{2} in X and Z respectively, then-
(A) Y is mid point of XZ
(B) $\frac{X Y}{Y Z}=\frac{3}{1}$
(C) $X Y=Y Z$
(D) $X Y+Y Z=2 Y Z$
10. If acute angle between the two asymptotes of hyperbola is $\frac{\pi}{3}$, then eccentricity of hyperbola is
(A) $\frac{2}{\sqrt{3}}$
(B) 2
(C) $\frac{4}{\sqrt{3}}$
(D) 4
11. Let $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors such that $\vec{r}_{1}=\vec{a}-\vec{b}+\vec{c}, r_{2}=\vec{b}+\vec{c}-\vec{a}$, $r_{3}=\vec{c}+\vec{a}+\vec{b}$ and $\vec{r}=2 \vec{a}+4 \vec{b}+6 \vec{c}$. If $\vec{r}=\lambda_{1} \vec{r}_{1}+\lambda_{2} \vec{r}_{2}+\lambda_{3} \vec{r}_{3}$. Then which of the following is/are true -
(A) $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are in A.P.
(B) $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are in G.P.
(C) $\lambda_{1}+\lambda_{2}+\lambda_{3}=6$
(D) $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are roots of the equation

$$
x^{3}-6 x^{2}+11 x-6=0
$$

12. If $A(\alpha)=\left[\begin{array}{ccc}\alpha & \alpha & \alpha \\ \alpha & \alpha & \alpha \\ \alpha & \alpha & \alpha\end{array}\right], \alpha \neq 0$ then -
(A) $2 \mathrm{~A}(1)=\mathrm{A}^{2}(1)$
(B) $\mathrm{A}^{3}(1)=9 \mathrm{~A}(1)$
(C) adj.A does not exist
(D) A^{-1} does not exist
13. Three numbers are selected at random from the set $\{1,2,3 \ldots \ldots \ldots . . \mathrm{N}\}$, one by one without replacement. If the first number is known to be smaller than second, then the probability that third selected number lies between the first two numbers is -
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{6}$
(D) $\frac{1}{8}$

This section contains 2 paragraphs; passage- I has 2 multiple choice questions (No. $14 \& 15$) and passageII has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

Passage \# 1 (Ques. 14 \& 15)
Consider matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1\end{array}\right]$,
$\mathrm{B}=\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & 1 & -1 \\ 2 & 2 & 3\end{array}\right], \mathrm{D}=\left[\begin{array}{l}13 \\ 11 \\ 14\end{array}\right] \& \mathrm{X}=\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]$ such that
solutions of equations $\mathrm{AX}=\mathrm{C}$ and $\mathrm{BX}=\mathrm{D}$ represents two points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right) \& \mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ respectively in 3 D space. Let plane P^{\prime} is $x+y+z=9$.
14. If $R S$ is the reflection of line $P Q$ in the plane P^{\prime}, then the point which does not lie on RS is -
(A) $(1,5,6)$
(B) $(5,3,4)$
(C) $(7,2,3)$
(D) $(3,4,2)$
15. The value of $\operatorname{det}(\operatorname{adj}(\operatorname{adj} A))$ is equal to -
(A) $(16)^{4}$
(B) $(16)^{2}$
(C) $-(16)^{3}$
(D) -16

Passage \# 2 (Ques. 16 to 18)

a_{1}, a_{2}, a_{3} are three consecutive terms of an increasing A.P., where a_{1} and a_{2} are prime numbers such that their sum is minimum possible odd prime number.
Urn 1 : Contains a_{1} red and a_{3} green balls
Urn 2 : Contains a_{2} red and a_{2} green balls
Urn 3 : Contains a_{3} red a_{1} green balls
P (i) Represents the probability of choosing $\mathrm{i}^{\text {th }}$ urn \& $\mathrm{P}(\mathrm{R})$ represents probability of choosing red ball \& similarly $P(G)$ represents the probability of choosing green ball.
16. If $P(i) \propto i^{2}$ and one ball is drawn from one of these urns then -
(A) $\mathrm{P}(\mathrm{G})=\frac{3}{7}$
(B) $\mathrm{P}(\mathrm{R})=\frac{6}{7}$
(C) $\mathrm{P}(\mathrm{R})>P(\mathrm{G})$
(D) $\mathrm{P}(\mathrm{R})=\mathrm{P}(\mathrm{G})$
17. If $\mathrm{P}(\mathrm{i})=\frac{1}{3}, \forall i=1,2,3$ and 2 balls are drawn randomly from one of these urns then the chance of drawing ball of different colours is -
(A) $\frac{3}{5}$
(B) $\frac{5}{9}$
(C) $\frac{2}{3}$
(D) $\frac{1}{5}$
18. If $\mathrm{P}(\mathrm{i})=\frac{1}{3} \forall i=1,2,3$ and an urn is chosen and balls are drawn one by one with replacement 10 times then probability that all drawings result in red balls is -
(A) $\frac{2^{10}+3^{10}+4^{10}}{6^{10}}$
(B) $\frac{4.2^{10}+3^{10}}{6^{10}}$
(C) $\frac{2^{10}+3^{10}}{6^{10}}$
(D) $\frac{2^{10}+3^{10}+4^{10}}{3.6^{10}}$

This section contains 9 questions (Q .19 to 27). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9 . The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are $6,0,9$ and 2 , respectively, then the correct darkening of bubbles will look like the following :

19. Two circles of radii $r_{1} \& r_{2}$ both touch coordinate axes $\&$ intersect orthogonally. Then value of $\frac{r_{1}}{r_{2}}$ (where $r_{1}>r_{2}$) is $k+\sqrt{k^{2}-1}$ where k equals $(k \in I)$.
20. Real no. (x, y) satisfy the circle with unit radius $\&$ centered at origin. If maximum \& minimum value of expression $\frac{4-y}{7-x}$ are M \& m respectively then value of $2 \mathrm{M}+6 \mathrm{~m}$ is.
21. If M is foot of perpendicular from point P on a parabola to its directrix \& SPM is an equilateral
triangle where S is focus then SP is equal to $\lambda \mathrm{a}$, where λ equals
22. The product of perpendicular drawn from any point on $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ upon its asymptote is $\left(\frac{12}{5}\right)^{k}$ where k equals
23. Let $\vec{a}=\sec \alpha \hat{i}+\ln \left(2 \pi \alpha-\alpha^{2}\right) \hat{j}+\sqrt{\cos \alpha} \hat{k}$ and $\vec{b}=\cos 5 \alpha \hat{i}+\sqrt{\sec \alpha} \hat{k}$. If $\vec{a} \& \vec{b}$ are perpendicular to each other then number of possible real solutions of α are.
24. If $\mathrm{A}=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ x & y & z\end{array}\right]$ is an orthogonal matrix then the value of $x+y$ is equal to.
25. If $\left|\begin{array}{ccc}0 & a b^{2} & a c^{2} \\ a^{2} b & 0 & b c^{2} \\ a^{2} c & c b^{2} & 0\end{array}\right|=2 a^{p} b^{q} c^{r}$, then $p+q+r$ is equal to.
26. There are two possible values of A (say $\mathrm{A}_{1} \& \mathrm{~A}_{2}$) in the solution of matrix equation
$\left[\begin{array}{cc}2 \mathrm{~A}+1 & -5 \\ -4 & \mathrm{~A}\end{array}\right]^{-1}\left[\begin{array}{cc}\mathrm{A}-5 & \mathrm{~B} \\ 2 \mathrm{~A}-2 & \mathrm{C}\end{array}\right]=\left[\begin{array}{cc}14 & \mathrm{D} \\ \mathrm{E} & \mathrm{F}\end{array}\right]$
then find $-27\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)$
27. If equation of the plane through the straight line $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z}{5}$ and perpendicular to the plane $x-y+z+2=0$ ia $a x-b y+c z+4=0$, then find the value of $\frac{10^{3} a+10^{2} b+10 c}{342}$.

IIT-JEE 2013 XtraEdge Test Series \# 3

Time : 3 Hours

Syllabus : Physics : Calorimetry, K.T.G.,Thermodynamics, Heat Transfer, Thermal expansion, Transverse wave, Sound wave, Doppler's effect. Chemistry : Chemical Equilibrium, Acid Base, Ionic Equilibrium, Classification \& Nomenclature, Isomerism , Hydrogen Family, Boron Family \& Carbon Family, S-block elements. Mathematics: Point, Straight line, Circle, Parabola, Ellipse, Hyperbola, Vector, 3-D.
Instructions : [Each subject contain]
Section - I : Question 1 to 8 are multiple choice questions with only one correct answer. $+\mathbf{3}$ marks will be awarded for correct answer and -1 mark for wrong answer.
Section - II : Question 9 to 13 are multiple choice questions with multiple correct answer. +3 marks will be awarded for correct answer and No Negative marks for wrong answer.
Section - III : Question 14 to 18 are passage based single correct type questions. +3 marks will be awarded for correct answer and -1 mark for wrong answer
Section - IV : Question 19 to 27 are Numerical Response Question (single digit Ans. type) +4 marks will be awarded for correct answer and No Negative marks for wrong answer.

PHYSICS

Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

1. Two moles of an ideal gas are undergone a cyclic process $1-2-3-1$. If net heat exchange in the process is -300 J , then work done by the gas in the process $2-3$ is $(\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol} \mathrm{K})$

(A) -5000 J
(B) 5000 J
(C) -3000 J
(D) None of these
2. An equi-molar mixture of a monoatomic and a diatomic gas is subjected to a continuous and reversible process such that for an infinite small part of the process,

$$
\mathrm{dQ}=-\frac{1}{3} \mathrm{dU}
$$

where dQ is the heat input to the gas. The molar heat capacity of the two during the process is -
(A) $-\frac{1}{3} R$
(B) $\frac{2}{3} R$
(C) $-\frac{2}{3} R$
(D) $\frac{R}{3}$
3. The internal energy (U) and the density (ρ) of an ideal gas follow the law $U \rho=$ constant during a particular process. The same process will be correctly shown on a $\mathrm{P}-\mathrm{U}$ diagram as -
(A)

(B)

(C)

(D)

4. In the adjacent figure one mole of a monoatomic gas is enclosed in an adiabatic vessel by means of a tightly fitted cork. Heat is supplied to the gas at a constant rate $\mathrm{Q}=4.5 \times 10^{-2} \mathrm{~J} / \mathrm{s}$, by an electric heater. At time $t=0$, temperature of the gas is $27^{\circ} \mathrm{C}$ and its pressure is equal to atmospheric pressure P_{0} $=10^{5} \mathrm{~Pa}$. If maximum frictional force offered to the cork by the walls of the vessel is 50 N , the time when cork will come out of the vessel is. (The cross-sectional area of the vessel $\mathrm{A}=10^{-2} \mathrm{~m}^{2}$. Take $\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol} \mathrm{K}$) -

5. There are two thin spheres A and B of the same material and same thickness. They emit like black bodies. Radius of A is double that of B . A and B of same temperature T. When A and B are kept in a room of temperature $T_{0}(<T)$, the ratio of their rates of cooling (rate of fall of temperature) is (assume negligible heat exchange between A and B) -
(A) $2: 1$
(B) $1: 1$
(C) $4: 1$
(D) $8: 1$
6. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is -
(A) 4 RT
(B) 5 RT
(C) 15 RT
(D) 11 RT
7. One end of a metal rod is dipped in boiling water and the other is dipped in melting ice.
(A) All parts of the rod are in thermal equilibrium with each other.
(B) We can assign a temperature to the rod.
(C) We can assign at temperature to the rod after steady state is reached
(D) The state of the rod does not change after steady state is reached
8. An anisotropic material has coefficient of linear expansion $\alpha, 2 \alpha$ and 3α along the three co-ordinate axis. Coefficient of cubical expansion of material will be equal to -
(A) 2α
(B) $\sqrt[3]{6} \alpha$
(C) 6α
(D) None of these

Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and no negative marks.
9. When the temperature of a copper coin is raised by $80^{\circ} \mathrm{C}$, its diameter increases by 0.2% -
(A) percentage rise in the area of a face is 0.4%
(B) percentage rise in the thickness is 0.4%
(C) percentage rise in the volume is 0.6%
(D) coefficient of linear expansion of copper is $0.25 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
10. A vessel is partly filled with liquid. When the vessel is cooled to a lower temperature, the space in the vessel, unoccupied by the liquid remains constant. Then the volume of the liquid $\left(\mathrm{V}_{\mathrm{L}}\right)$, volume of the vessel $\left(\mathrm{V}_{\mathrm{V}}\right)$, the coefficient of cubical expansion of material of the vessel $\left(\gamma_{\mathrm{V}}\right)$ and of the liquid $\left(\gamma_{\mathrm{L}}\right)$ are related as -
(A) $\gamma_{\mathrm{L}}>\gamma_{\mathrm{V}}$
(B) $\gamma_{L}<\gamma_{V}$
(C) $\gamma_{\mathrm{V}} / \gamma_{\mathrm{L}}=\mathrm{V}_{\mathrm{V}} / \mathrm{V}_{\mathrm{L}}$
(D) $\gamma_{\mathrm{V}} / \gamma_{\mathrm{L}}=\mathrm{V}_{\mathrm{L}} / \mathrm{V}_{\mathrm{V}}$
11. With rise in temperature -
(A) Rubber contract
(B) A floating body sinks a little more
(C) Water contracts if temperature rises from $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$
(D) Water expands if temperature rises from $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$
12. The tension is a stretched string fixed at both ends is changed by 2%, the fundamental frequency is found to get changed by 15 Hz . Select the correct statement(s) -

(A) Wavelength of the string of fundamental frequency does not change
(B) Velocity of propagation of wave changes by 2%
(C) Velocity of propagation of wave changes by 1%
(D) Original frequency is 1500 Hz
13. The equation of a wave traveling on a string is given by $\left.y=8 \sin \left[5 \mathrm{~m}^{-1}\right) \mathrm{x}-\left(4 \mathrm{~s}^{-1}\right) \mathrm{t}\right]$. Then-
(A) velocity of wave is $0.8 \mathrm{~m} / \mathrm{s}$
(B) the displacement of a particle of the string at $\mathrm{t}=0$ and $\mathrm{x}=\frac{\pi}{30} \mathrm{~m}$ from the mean position is 4 m
(C) the displacement of a particle from the mean

$$
\text { position at } \mathrm{t}=0, \mathrm{x}=\frac{\pi}{30} \mathrm{~m} \text { is } 8 \mathrm{~m}
$$

(D) velocity of the wave is $8 \mathrm{~m} / \mathrm{s}$

This section contains 2 paragraphs; passage- I has 2 multiple choice questions (No. $14 \& 15$) and passageII has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

Passage \# 1 (Ques. 14 to 15)

A transverse pulse traveling in the positive x-direction without any change in shape is represented by the function $y(x, t)$ which gives the displacement of the particle at the location x at a time t. It is given that
$y(x, 0)=\frac{1}{1+x^{2}}($ at $t=0 s)$
and $y(x, 2)=\frac{1}{x^{2}-2 x+2}($ at $t=2 s)$
where y is measured in centimetre, x in metre and t in seconds.
The velocity of any particle on the waveform is given by
$\mathrm{v}(\mathrm{x}, \mathrm{t})=\frac{\partial \mathrm{y}(\mathrm{x}, \mathrm{t})}{\partial \mathrm{t}}$,
the derivative of the displacement with respect to time t, regarding x as a constant (while taking the derivative)
The velocity of any particle on the waveform located at x is a function of x as well as the time t.
The mass density of the particle is $40 \mathrm{~g} / \mathrm{m}$ along the x -axis.
14. The speed of the wave is -
(A) $1 \mathrm{~m} / \mathrm{s}$
(B) $2 \mathrm{~m} / \mathrm{s}$
(C) $0.5 \mathrm{~m} / \mathrm{s}$
(D) none of the above
15. The maximum speed of any particle on the waveform equals -
(A) $\frac{\sqrt{3}}{4} \mathrm{~cm} / \mathrm{s}$
(B) $\frac{\sqrt{3}}{16} \mathrm{~cm} / \mathrm{s}$
(C) $\frac{1}{16} \mathrm{~cm} / \mathrm{s}$
(D) $\frac{3 \sqrt{3}}{16} \mathrm{~cm} / \mathrm{s}$

Passage \# 2 (Ques. 16 to 18)

A hot body placed in surroundings of temperature $10^{\circ} \mathrm{C}$ obeys Newton's law of cooling : $\frac{d \theta^{\prime}}{d t}=-k \theta^{\prime}$, where θ^{\prime} is the excess temperature of the body above its surroundings and $\mathrm{k}=\frac{7}{100} \mathrm{~s}^{-1}$.
The thermal capacity of the body is $100 \mathrm{JK}^{-1}$.
(Take $\ln 2=0.7$).
16. If the initial temperature of the body is $90^{\circ} \mathrm{C}$, after what time will the temperature of the body be equal to $50^{\circ} \mathrm{C}$?
(A) 8.0 s
(B) 10 s
(C) 9.5 s
(D) 10.5 s
17. The rate of loss of heat from the body, when its temperature is $70^{\circ} \mathrm{C}$, is -
(A) 320 W
(B) 350 W
(C) 450 W
(D) 420 W
18. Infra-red radiation is focused on the body, supplying it energy at the rate of $490 \mathrm{~W}, 50 \%$ of which is absorbed. The equilibrium temperature of the body equals (Assume that Newton's law of cooling holds)
(A) $35^{\circ} \mathrm{C}$
(B) $45^{\circ} \mathrm{C}$
(C) $80^{\circ} \mathrm{C}$
(D) greater than $100^{\circ} \mathrm{C}$

This section contains 9 questions (Q .19 to 27). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9 . The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are $6,0,9$ and 2, respectively, then the correct darkening of bubbles will look like the following :

19. Two cylinders A and B filled with pistons contain equal amounts of an ideal diatomic gas at 300 K . The piston of A is force to move, while that of B is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise in temperature of the gas in A is 30 K , then the rise in temperature of the gas in B is..... $\times 10^{-1}$
20. A heat engine absorbs heat at $327^{\circ} \mathrm{C}$ and exhausts heat at $127{ }^{\circ} \mathrm{C}$. The maximum amount of work performed by the engine in joule per kilo calorie is-
21. 1 g of water on evaporation at atmospheric pressure forms $1671 \mathrm{~cm}^{3}$ of steam. Heat of vaporization at this pressure is $540 \mathrm{cal} / \mathrm{g}$. The increase in internal energy in K cal is... $\times 10^{1}$
22. An observer at a distance of 800 m from a sound source heard first the sound signal which travelled through water and 1.785 later the signal which travelled through air. The velocity of sound in water is $(x \cdot y) \times 10^{3} \mathrm{~m} / \mathrm{s}$. Where x and y is the single digit non zero number, find x. The air temperature is $17^{\circ} \mathrm{C}$ -
23. A vibrating string 50.0 cm long is under a tension of 1.00 N . The results from five successive stroboscopic pictures are shown is observations reveal that the maximum displacement occurred at flashes 1 and 5 with no other maxima in between. Speed of the traveling waves on the string is (x.y) m / s where x and y are single non zero digit number. Find x.

24. A long spring such as slinky is often used to demonstrate longitudinal waves. If mass of spring is m , length L and force constant K , then find the speed of longitudinal waves on the spring where $\mathrm{m}=0.250 \mathrm{~kg}, \mathrm{~L}=2.00 \mathrm{~m} \mathrm{~K}=1.50 \mathrm{~N} / \mathrm{m}$.
25. Two triangular wave pulses are traveling towards each other on a stretched string as shown in figure.

$$
\longrightarrow v=2 \mathrm{~cm} / \mathrm{s} \quad t=0
$$

Speed of each pulse is $2 \mathrm{~cm} / \mathrm{s}$. Find maximum displacement of particle of string at $t=1 \mathrm{~s}$. The leading edges of the pulses are 2.00 cm apart at $\mathrm{t}=0$.
26. A wave pulse described by the function

$$
\gamma(\mathrm{x}, \mathrm{t})=\frac{\mathrm{A}^{3}}{\mathrm{~A}^{2}+(\mathrm{x}-\mathrm{vt})^{2}}
$$

propagates down the string, where $\mathrm{A}=1.00 \mathrm{~cm}$, and $v=20.0 \mathrm{~m} / \mathrm{s}$. At the point $\mathrm{x}=4.00 \mathrm{~cm}$, at the $\mathrm{t}=\mathrm{n} \times$ $10^{-3} \mathrm{~s}$ the displacement is maximum. Find n .
27. Two trains whistles, A and B each have a frequency of 392 Hz . A is stationary and B is moving toward the right (away from A) at a speed of $35.0 \mathrm{~m} / \mathrm{s}$. A listener is between the two whistles and is moving toward the right with a speed of $15.0 \mathrm{~m} / \mathrm{s}$. No wind is blowing. What is beat frequency detected by the listener.

CHEMISTRY

Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

1. Which of the following compound's prefix 'iso' is not correct -
(A) Iso pentane
(B) Iso Hexane
(C) Iso butane
(D) Iso octane
2. Which of the following constitutes a set amphoteric species -
(A) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HCO}_{3}^{-}$
(B) $\mathrm{H}_{2} \mathrm{O}, \mathrm{HPO}_{4}{ }^{2-}, \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
(C) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{PO}_{3}^{-}, \mathrm{HPO}_{4}{ }^{2-}$
(D) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{SO}_{4}^{2-}$
3. The catalyst used in process of manufacture of H_{2} from water gas is -
(A) Finely divided Ni
(B) $\mathrm{V}_{2} \mathrm{O}_{5}$
(C) Pb
(D) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Cr}_{2} \mathrm{O}_{3}$
4. Boron nitride has the structure of the type -
(A) both diamond and graphite
(B) graphite
(C) diamond
(D) NaCl
5. Urea and thiourea exhibits -
(A) Metamerism
(B) Tautomerism
(C) Functional isomerism
(D) Geometrical isomerism
6. I.U.P.A.C. name of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Br}$ is
(A) 1-bromo pentane
(B) 2-methyl-4-bromo pentane
(C) 1-bromo-3-methyl butane
(D) 2-methyl-3-bromo propane
7. Which of the following do not have $\mathrm{B}-\mathrm{B}$ bond ?
(A) $\mathrm{Ni}_{3} \mathrm{~B}$
(B) FeB
(C) $V_{3} B_{2}$
(D) NaB_{15}
8. Which of the following is heterocyclic aromatic species -
(A)

(B)

(C)

(D)

Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and no negative marks.
9. The stronger electron withdrawing effect of $\stackrel{\oplus}{N} R_{3}$ than NO_{2} can be explained on basis of -
(A) Inductive effect
(B) Field effect
(C) Mesomeric effect
(D) Hyper conjugation effect
10. Which of the following is/are correct?
(A) The boron hydrides having molecular formula $\mathrm{B}_{6} \mathrm{H}_{11}$ and $\mathrm{B}_{6} \mathrm{H}_{9}$ do not exist
(B) In $\mathrm{B}_{4} \mathrm{H}_{10}$ there are one $\mathrm{B}-\mathrm{B}$ bonds
(C) In $\mathrm{B}_{4} \mathrm{H}_{10}$ there are four $\mathrm{B}--\mathrm{H}---\mathrm{B}$ bonds
(D) In $\mathrm{B}_{4} \mathrm{H}_{10}$ the B atoms are sp^{2} and sp^{3} hybridised
11. $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$ which of the following is/are correct?
(A) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid and $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a monobasic acid
(B) In $\mathrm{H}_{3} \mathrm{PO}_{3}$ phosphorous is sp^{3} hybridised but in $\mathrm{H}_{3} \mathrm{BO}_{3}$ boron is sp^{2} hybridised
(C) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a Bronsted acid but $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a lewis acid
(D) In $\mathrm{H}_{3} \mathrm{PO}_{3}$ the octet is completed for phosphorous but in $\mathrm{H}_{3} \mathrm{BO}_{3}$ the octet is incomplete
12. Which of the following expression is/are true ?
(A) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{w}}}$ for a neutral solution
(B) $\left[\mathrm{OH}^{-}\right]<\sqrt{\mathrm{K}_{\mathrm{w}}}$ for an acidic solution
(C) $\mathrm{pH}+\mathrm{pOH}=14$ at all temperature
(D) $\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$ at $25^{\circ} \mathrm{C}$
13. Which of the following is/are the soft bases ?
(A) CN^{-}
(B) CO
(C) $\mathrm{C}_{2} \mathrm{H}_{4}$
(D) $\mathrm{H}_{2} \mathrm{O}$

This section contains 2 paragraphs; passage- I has 2 multiple choice questions (No. $14 \& 15$) and passageII has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

Passage \# 1 (Ques. 14 \& 15)

Calcium sulphate is available in nature in two forms, anhydride, CaSO_{4} and gypsum, CaSO_{4}. $2 \mathrm{H}_{2} \mathrm{O}$. Gypsum when heated at $120^{\circ} \mathrm{C}$, from the monoclinic form it changes to orthorhombic form and then it loses three fourth of it's water of crystallisation and plaster of paris is produced
14. What will be the product if gypsum is heated at $200^{\circ} \mathrm{C}$?
(A) $\mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(B) $2 \mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(C) CaSO_{4}
(D) $\mathrm{CaO}, \mathrm{SO}_{2}$ and O_{2}
15. Suspension of gypsum is used for production of nitrogeneous fertilizer as follows -
(A) $\mathrm{CaSO}_{4}+\mathrm{NH}_{3} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$$
+\mathrm{Ca}(\mathrm{OH})_{2}
$$

(B) $\mathrm{NH}_{3}+\mathrm{CaSO}_{4}+\mathrm{CO}_{2} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ $+\mathrm{CaCO}_{3}$
(C) $\mathrm{CO}_{2}+\mathrm{CaSO}_{4} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CaCO}_{3}$
(D) $\mathrm{NH}_{3}+\mathrm{CaSO}_{4}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3}$

$$
+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

Passage \# 2 (Ques. 16 to 18)
For general reaction,

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

equilibrium constant K_{c} is given by the following relation.

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

However, when all reactants and products are gases, the equilibrium constant is generally expressed in terms of partial pressures. The relationship between the partial pressure (p) of any one gas in the equilibrium mixture and the molar concentrations can be correlated provided the gas behaves as an ideal gas.
16. The relation between partial pressure of the gas and its molar concentration at a given temperature T is
A) $p=\frac{\text { molarconcentration }}{T}$
(B) $\mathrm{p}=\frac{\text { molarconcentration }}{\mathrm{RT}}$
(C) $\mathrm{p}=$ molar concentration $\times \mathrm{RT}$
(D) $p=$ molar concentration $\times T$
17. Equilibrium constant for the following reaction is $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$
(A) $K_{p}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \times P$
(B) $K_{p}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \times \frac{[R T]^{c-d}}{(R T)^{a-b}}$
(C) $K_{p}=\frac{[C]^{c}[D]^{d}}{[A]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}} \times \frac{[\mathrm{RT}]^{\mathrm{c}+\mathrm{d}}}{(\mathrm{RT})^{\mathrm{a}+\mathrm{b}}}$
(D) $K_{p}=\frac{K_{c} R T}{P}$
18. When 8.1 ml of hydrogen and 9.3 ml of iodine vapour are heated to $444^{\circ}, 13.5 \mathrm{ml}$ of HI are produced. The equilibrium concentration for H_{2} and I_{2} respectively should be -
(A) 1.35 and 1.35
(B) 2.55 and 2.55
(C) 1.35 and 2.55
(D) 2.55 and 1.35

This section contains 9 questions (Q. 19 to 27). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9 . The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are $6,0,9$ and 2 , respectively, then the correct darkening of bubbles will look like the following :

19. Consider the reaction $\mathrm{AB}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{AB}_{\mathrm{g}}+\mathrm{B}_{(\mathrm{g})}$. It the initial pressure of $A B_{2}$ is 100 torr and equilibrium pressure is 120 torr. The equilibrium constant Kp in terms of torr is.
20. It 50 ml of 0.2 M NaCN is mixed with 50 ml of 0.2 M HCl then $\left(\mathrm{K}_{\mathrm{b}}\right.$ for $\mathrm{CN}^{-}=2 \times 10^{-5}$) Calculate concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$interms of molarity $\times 10^{-6}$.
21. On heating $\mathrm{CaC}_{2} \mathrm{O}_{4}, \ldots \ldots$...type of gases are produced
22. In borax $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}, 10 \mathrm{H}_{2} \mathrm{O}\right)$ the number of $\mathrm{B}-\mathrm{O}-\mathrm{B}$ bonds is
23. The basicity of boric acid is
24. In $\mathrm{H}_{2} \mathrm{O}$ (s) one $\mathrm{H}_{2} \mathrm{O}$ molecule is surrounded by $\ldots \ldots \ldots$ other $\mathrm{H}_{2} \mathrm{O}$ molecules by hydrogen bonds.
25. The total number of Acyclic isomers possible for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is/are \qquad
26. How many structural isomers are possible with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$?
27. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ shows how many Isomers

MATHEMATICS

Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - $\mathbf{1}$ mark for each wrong answer.

1. The locus of point $\mathrm{P}(x, y)$ such that $\sqrt{x^{2}+y^{2}+8 y+16}-\sqrt{x^{2}+y^{2}-6 x+9}=5$ is -
(A) a circle
(B) a finite line segment
(C) a parabola
(D) part of line $\frac{x}{3}-\frac{y}{4}=1$
2. Let lines $(y-2)=m_{1}(x-3) \& y+4=m_{2}(x-5)$ intersect at right angles at P (where m_{1}, m_{2} are parameters). If locus of P is a circle $x^{2}+y^{2}+g x+f y+\mathrm{c}=0$, then $f-g+c$ equals -
(A) 10
(B) 13
(C) 17
(D) 22
3. A variable line $\frac{x}{a}+\frac{y}{b}=1$ slides on the coordinate axes in second quadrant such that sum of length of intercepts made by it on axes is ℓ, then the locus of circumcentre of triangle made by the line with the axes is -
(A) $2(x-y)+\ell=0$
(B) $2(x+y)-\ell=0$
(C) $2(x+y)+\ell=0$
(D) None
4. If acute angle between the lines represented by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is $\tan ^{-1} m$ and $a^{2}+b^{2}-a b-a-b+1 \leq 0$ then $3 a+2 b$ equals -
(A) $\frac{1}{2 \mathrm{~m}}$
(B) $\frac{1}{\mathrm{~m}}$
(C.) m
(D) 2 m
5. A rhombus ABCD has sides of length 8 cm . A circle with centre 'A' passes through C (opposite vertex). Also a circle with centre B passes through D. If two circles are tangent to each other, then area of rhombus -
(A) 75 sq. units
(B) 48 sq. units
(C) 30 sq. units
(D) None
6. If length of focal chord of $y^{2}=4 a x$ is ℓ, then angle between axis of parabola and focal chord is -
(A) $\pm \sin ^{-1} \sqrt{\frac{2 a}{\ell}}$
(B) $\pm \sin ^{-1} \sqrt{\frac{4 a}{\ell}}$
(C) $\pm \tan ^{-1} \sqrt{\frac{4 a}{\ell}}$
(D) None of these
7. If \vec{b} and \vec{c} are two non collinear vectors such that $\vec{a} \cdot(\vec{b}+\vec{c})=4$ and

$$
\vec{a} \times(\vec{b} \times \vec{c})=\left(x^{2}-2 x+6\right) \vec{b}+(\sin y) \vec{c}, \text { then }
$$ the point (x, y) always lies on -

(A) $x=1$
(B) $y=1$
(C) $y=\pi$
(D) $x+y=0$
8. If a, b, c are the $p^{\text {th }}, q^{\text {th }}, r^{\text {th }}$, terms of an A.P. respectively and $\vec{x}=(q-r) \hat{i}+(r-p) \hat{j}+(p-q) \hat{k} \&$ $\vec{y}=a \hat{i}+b \hat{j}+c \hat{k}$ then -
(A) \vec{x}, \vec{y} are parallel vectors
(B) $\vec{x} \times \vec{y}=\hat{i}+\hat{j}+\hat{k}$
(C) $\vec{x} \cdot \vec{y}=1$
(D) \vec{x}, \vec{y} are orthogonal vectors

Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and no negative marks.
9. Tangents are drawn to the circle $x^{2}+y^{2}=32$ from a point A lying on x -axis. The tangent cuts y axis at $B \& C$ points. Then point A such that area of $\triangle \mathrm{ABC}$ is minimum can be -
(A) $(6,0)$
(B) $(-8,0)$
(C) $(-6,0)$
(D) $(8,0)$
10. If two distinct chords of a parabola $y^{2}=4 a x$, passing through $(a, 2 a)$ are bisected on line $x+y=1$, then length of latus rectum can be-
(A) 1
(B) 2
(C) 3
(D) 4
11. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, then which of the following is/are correct -
(A) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs
(B) \vec{b} is a unit vector
(C) $|\vec{a}|=|\vec{c}|$
(D) $\vec{a}, \vec{b}, \vec{c}$ are not orthogonal to each other
12. If a vector \vec{r} of magnitude $3 \sqrt{6}$ is directed along bisector of the angle between the vector $\vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k} \& \vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$, then \vec{r} is equal to -
(A) $\hat{i}-7 \hat{j}+2 \hat{k}$
(B) $\hat{i}+7 \hat{j}-2 \hat{k}$
(C) $-\hat{i}+7 \hat{j}-2 \hat{k}$
(D) $\hat{i}-7 \hat{j}-2 \hat{k}$
13. Equation of a plane which passes through the point of intersection of lines $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}$ and $\frac{\mathrm{x}-3}{1}=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}-2}{3}$ and at greatest distance from the point $(0,0,0)$ is -
(A) $4 x+3 y+5 z=25$
(B) $4 x+3 y+5 z=50$
(C) $3 x+4 y+5 z=49$
(D) $x+7 y-5 z=2$

This section contains 2 paragraphs; passage- I has 2 multiple choice questions (No. 14 \& 15) and passageII has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and - 1 mark for each wrong answer.

Passage \# 1 (Ques. 14 \& 15)

The equation of a curve is
$f(x, y)=9 x^{2}-24 x y+16 y^{2}-20 x-15 y-60=0$
14. Equation of axis of curve is -
(A) $3 x=y$
(B) $3 x+4 y=0$
(C) $3 x+y=0$
(D) $3 x-4 y=0$
15. Equation of directrix is
(A) $16 x+9 y=53$
(B) $16 x+12 y+53=0$
(C) $16 x+2 y=53$
(D) None

Passage \# 2 (Ques. 16 to 18)
Consider a plane having equation $\vec{r} \cdot \vec{n}=d$ (where \vec{n} should not be unit vector) \& two points $\mathrm{A}(\vec{a}) \& \mathrm{~B}(\vec{b})$ are lying on same side w.r.t. the plane.
16. If foot of perpendiculars from $A \& B$ to the plane are $A^{\prime} \& B^{\prime}$ respectively then distance $A^{\prime} B^{\prime}$ is equal to -
(A) $\frac{|(\vec{b}-\vec{a}) \cdot \vec{n}|}{|\vec{n}|}$
(B) $|(\vec{b}-\vec{a}) \cdot \vec{n}|$
(C) $\frac{|(\vec{b}-\vec{a}) \times \vec{n}|}{|\vec{n}|}$
(D) $|(\vec{b}-\vec{a}) \times \vec{n}|$
17. Reflection of the $\mathrm{A}(\vec{a})$ w.r.t. the plane has the position vector -
(A) $\vec{a}+\frac{2}{n^{2}}(d-\vec{a} \cdot \vec{n}) \vec{n}$
(B) $\vec{a}+\left(\frac{d-\vec{a} \cdot \vec{n}}{n^{2}}\right) \vec{n}$
(C) $\vec{a}+\frac{2}{n^{2}}(d+\vec{a} \cdot \vec{n}) \vec{n}$
(D) none of these
18. If a plane is drawn from the point \vec{a} parallel to $\vec{r} \cdot \vec{n}=d \&$ another plane is drawn from the point \vec{b} parallel to $\vec{r} \cdot \vec{n}=d$ and the distance between two planes is d_{1} then $\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)^{2}+d_{1}{ }^{2}$, is equal to-
(A) $\frac{(\vec{b}-\vec{a})^{2}}{n^{2}}$
(B) $|\vec{b}-\vec{a}|^{2} n^{2}$
(C) $(\vec{b}-\vec{a})^{2}$
(D) n^{2}

This section contains 9 questions (Q. 19 to 27). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9 . The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are $6,0,9$ and 2, respectively, then the correct darkening of bubbles will look like the following :

19. Number of straight lines equidistant from three non collinear points in the plane of points is.
20. If $x \& y$ are non zero real no. satisfying $x y\left(x^{2}-y^{2}\right)=\left(x^{2}+y^{2}\right)$ then minimum value of $x^{2}+y^{2}$ is.
21. The slope of the line which belongs to family of line $(1+\lambda) x+(\lambda-1) y+2(1-\lambda)=0$ and makes shortest intercept on $x^{2}=4 y-4$ is
22. The number of points on hyperbola $x y=c^{2}$ from which two tangents drawn to ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (where $b<a<c$) are perpendicular to each other is. \qquad
23. Two circle of radii ' a ' and ' b ' touching externally are inscribed in area bounded by $\mathrm{y}=\sqrt{1-x^{2}}$ and x-axis. If $b=\frac{1}{2}$ and $a=\frac{1}{k}$, then k is
24. If $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CD}}=\frac{k}{2}\left(|\overrightarrow{\mathrm{AD}}|^{2}+|\overrightarrow{\mathrm{BC}}|^{2}-|\overrightarrow{\mathrm{AC}}|^{2}-|\overrightarrow{\mathrm{BD}}|^{2}\right)$, then the value of k is.
25. If \vec{a} and \vec{b} are vectors such that $|\vec{a}|=2,|\vec{b}|=1$, angle between \vec{a} \& \vec{b} is $\frac{\pi}{3}$ and \vec{c} satisfies $2(\vec{a}+\vec{b})-\vec{c}=\vec{b} \times \vec{c}$, then the value of $|(\vec{a} \times \vec{c}) . \vec{b}|$ is.
26. In a regular tetrahedron let θ be the angle between any edge and a face not containing the edge. If $\cos ^{2} \theta=\frac{a}{b}$ where $a, b \in \mathrm{I}^{+}$also a and b are coprime, then find the value of $\frac{5}{13}(10 a+b)$
27. Let $\mathrm{A}(1,2), \mathrm{B}(3,4)$ be two point and $\mathrm{C}(x, y)$ be a point such that $(x-1)(x-3)+(y-2)(y-4)=0$. If area of $\triangle A B C$ is 1 sq , unit. Then maximum number of positions of C in $x y$ plane is.

1. An element's name must be approved by the International Union of Pure and Applied Chemistry, or I.U.P.A.C., in Geneva, Switzerland.
2. The heaviest element gas is radon at room temperature. (There may be heavier ones, but they are compunds not atoms). It was discovered by Friedrich Ernst Dorn in Germany in 1900, but he first called it niton, until 1923.
3. The lightest gas is hydrogen, it is also the lightest of all elements.
4. The element with the highest melting/freezing point is carbon at 6,381 degrees Fahrenheit (3,527 degrees Celsius).
5. The element with the highest boiling point is rhenium at 10,105 degrees Fahrenheit (5,596 degrees Celsius).

XtraEdge Test Series ANSWER KEY

IIT- JEE 2012 (July issue)									
PHYSICS									
Ques	1	2	3	4	5	6	7	8	9
Ans	D	A	D	B	D	B	D	C	C,D
Ques	10	11	12	13	14	15	16	17	18
Ans	B,C	A,B,C	A,C	B,C	A	B	D	A	A
Numerical	19	20	21	22	23	24	25	26	27
Response	5	3	6	3	1	8	4	5	8

CHEMISTRY

Ques	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Ans	C	A	B	C	C	B	D	D	$\mathrm{A}, \mathrm{B}, \mathrm{C}$
Ques	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
Ans	$\mathrm{A}, \mathrm{B}, \mathrm{C}$	$\mathrm{A}, \mathrm{B}, \mathrm{D}$	$\mathrm{B}, \mathrm{C}, \mathrm{D}$	C, D	A	B	A	D	D
Numerical	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$
Response	3	4	9	3	3	4	3	9	1

MATHEMATICS

Ques	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Ans	D	C	A	B	A	D	D	D	A, C
Ques	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
Ans	A, B	$\mathrm{A}, \mathrm{C}, \mathrm{D}$	B, D	C	D	A	C	B	D
Numerical	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$
Response	2	4	4	2	4	0	9	9	5

IIT- JEE 2013 (July issue)

PHYSICS

Ques	1	2	3	4	5	6	7	8	9
Ans	D	C	C	A	B	D	D	C	A,C,D
Ques	10	11	12	13	14	15	16	17	18
Ans	A,D	A,B,C	A,C,D	A,B	C	D	B	D	B
Numerical	19	20	21	22	23	24	25	26	27
Response	4	1	5	1	5	5	0	2	4

CHEMISTRY

Ques	1	2	3	4	5	6	7	8	9
Ans	D	C	D	B	B	C	A	C	A,B
Ques	10	11	12	13	14	15	16	17	18
Ans	A,B,C	A,B,C,D	A,B,D	A,B,C	C	B	C	C	C
Numerical Response	19	20	21	22	23	24	25	26	27
	5	7	1	5	1	2	6	9	5

MATHEMATICS

Ques	1	2	3	4	5	6	7	8	9
Ans	D	C	A	B	B	B	A	D	B,D
Ques	10	11	12	13	14	15	16	17	18
Ans	A,B,C	A,B,C	A,C	B	D	B	C	A	C
Numerical Response	19	20	21	22	23	24	25	26	27
	1	4	0	0	4	1	3	5	4

Subscription Offer for Students

'XtraEdge for IIT-JEE

IIT JEE becoming more competitive examination day by day. Regular change in pattern making it more challenging.

"XtraEdge for IIT JEE" magazine makes sure you're updated $\&$ at the forefront. Every month get the XtraEdge Advantage at your door step.

Magazine content is prepared by highly experienced faculty members on the latest trend of IIT JEE.
Predict future paper trends with XtraEdge Test Series every month to give students practice, practice \& more practice.
Take advantage of experts' articles on concepts development and problem solving skills
Stay informed about latest exam dates, syllabus, new study techniques, time management skills and much more XtraFunda.
Confidence building exercises with Self Tests and success stories of IITians
Elevate you to the international arena with international Olympiad/Contests problems and Challenging Questions.

SUBSCRIPTION FORM FOR "EXTRAEDGE FOR IIT-JEE

The Manager-Subscription,
"XtraEdge for IIT-JEE"
Career Point Infosystems Ltd,
$4^{\text {th }}$ Floor, CP-Tower,
IPIA, Kota (Raj)-324005
I wish to subscribe for the monthly Magazine "XtraEdge for IIT-JEE"
Half Yearly Subscription (Rs. 100/-)One Year subscription (Rs. 200/-)Two year Subscription (Rs. 400/-)
I am paying R.
.throughMoney Order (M.O)Bank Demand Draft of No
Bank.
Dated
(Note: Demand Draft should be in favour of "Career Point Infosystems Ltd" payable at Kota.)
Name:
Father's Name: \qquad
Address:

Subscription Offer for Schools

XtraEdge for IIT-JEE

IIT JEE becoming more competitive examination day by day. Regular change in pattern making it more challenging.

"XtraEdge for IIT JEE" magazine makes sure you're updated $\&$ at the forefront. Every month get the XtraEdge Advantage at your door step.

Magazine content is prepared by highly experienced faculty members on the latest trend of the IIT JEE.
Predict future paper trends with XtraEdge Test Series every month to give students practice, practice \& more practice.
Take advantage of experts' articles on concepts development and problem solving skills
Stay informed about latest exam dates, syllabus, new study techniques, time management skills and much more XtraFunda. Confidence building exercises with Self Tests and success stories of IITians
Elevate you to the international arena with international Olympiad/ Contests problems and Challenging Questions.

FREE SUBSCRIPTION FORM FOR "EXTRAEDGE FOR IIT-JEE

The Manager-Subscription,
"XtraEdge for IIT-JEE"
Career Point Infosystems Ltd,
$4^{\text {th }}$ Floor, CP-Tower,
IPIA, Kota (Raj)-324005
We wish to subscribe for the monthly Magazine "XtraEdge for IIT-JEE"
\square Half Yearly Subscription \square One Year subscriptionTwo year Subscription
Institution Detail:
Graduate Collage
\square Senior Secondary SchoolHigher Secondary School
Name of the Institute:
Name of the Principal:
Mailing Address:
\qquad
Board/ University: \qquad

Pre－Medical

All Top Most Faculty of Kota for Pre－Medical now with CAREER POINT

Record Breaking Performance in the Very First Year Selections From Classroom Coaching Kota center

AIPMT（Pre） 2011
Total Selections 752 out of 2041 Success Rate 36.8 \％

Success Rate 30.4 \％

Highest Success Rate in India in Every Exam

Admission Announcement For Pre－Medical

Nurture Course $\mathrm{XI}+\mathrm{Pr}$－Medic： 2013	Enthuse Course XII＋Fre－Medicel 2012	Target Course Fre－Medical 2012	Achiever Batch＊ Pre－Medical 2012
｜lor X po $\times 0$ meving atuderta］ Divet Adrissien，Clast fourtiag frome Phase－fil： 24 Dre 2011 Phase－IV： 5 July 2011	［For X0 to XII moving nadents］ Dinest Adeltilen Class flurting foum Phase－fil： 17 Jure 2011	｜or XII mopwaing；asis studerti］ Direct Admintion Clant Starting fon Phase－N： 13 Jhy 2011 Phasev： 22 Juy 2011	（for 301 appeding／pats students） Divect Admituine Clast fartiag has Phase－FI：13，山／ 2011 Phase V：27 Juy 2011

[^0]
IITJEE | AIEEE | AIPMT

Ensure Success with

 Most Advanced Result Oriented Distance Learning Program\checkmark Online Solutions \checkmark Technology Driven Feedback \& Analysis

DISTANCE LEARNING COURSES (Correspondence \& test series)

Rewtr Oriented STUDY MATERIAL PACKAGE		
Class $8^{*}, 9^{*}, 10^{*}, 11^{*}, 12^{\prime \prime}$ or $12^{\text {² }}$ Pass		
Stady Material Package includes - Comprehensive Theory rotes - MaritevelfaercheSheets - Orline Support for problem solving - Unit wise practice lest if feedoack by a2deeftack technology - SepantaFomulabocilet Dispatch: Immediately		
COURSE FEE:		
Course	2012	2013
IIT-JEE	₹ 9000%	₹ 98000
AIEEE	₹ 9000\%	₹ 98000 -
AIPMT	₹ 9000\%.	₹ 9800\%.

Crinieal Feedhack
 ALL INDIA TEST SERIES
 (AT CENTER / BY POST)

Class $11^{\circ}, 12^{\circ}$ or 12° Pass
Allindia Test Series Includes

- Unitwise Practice Jests (athome)

E Part Sylabus lests (sit downat test centethomel - FullSulatustests (ut-down at test centeffomel) - Oiticalfeed back on performance by azfeedtack - Separateformulabooilet

- Important concepts forquich revition

First Test en 15th Aopast 2011

COURSE FEE	
Course	Fee
IIT-JEE 2012	$₹ 3600 \%$
AIEEE 2012	$₹ 3600 \%$
AIPMT 2012	$₹ 3600 \%$

Quick Reviatan	
CP RANKER'S	
Class 12^{*} or 12^{*} Pass	
CPRanker's Package Includes	
- Collection of more than $3000+$ problema	
- Detaiedsotution	
E Separateformalaboclet	
- Important concepts for quickrevision	
Dispatch: Nowember 2011	
COURSE FEE	
Course	Fee
IITJEE 2012	$₹ 900 /$
AIEEE 2012	₹ 900/-
AIPMT 2012	₹ 900\%

[^1]For more detals: Call us |SMS: Type CP <space> DLP and send it to 56767| visit our website

KOTA (H.O.):
CP Tower, Road No. 1, IPCA, Kota (Rajasthan) 324005 Tel: 0744-3040000, 2430505 Fax : 0744-2434159

[^0]: Application Form and Brechure for Classroom Courses can be obtained：in In Persoa：From our office Oh from authorised form insue courters in your
 －Apply selinefill online asplication，tais protbut of the generated form and send it along with applicable fee and supporting documents

[^1]: ADMISSION PROCEDUAE:

 scholinhip documerts if ant. and Derrand Dah of fee lien per
 Online: Fiflortre asplcator, laie tepritat of the perertist lamind iend in ilong with upplatiol lee and fuppoting dicimetti in case of scholinitipt
 At eer Office: Jeply an itintind appionon fom mabiele fomany of ou affcehossetu pien below
 Important: Wiras cleally your mame. Dose of Brth. Mother lame Ficters Nirre Conplete Adtest, leiphone Niutbers weh STD code noblenebehamillany

 The Scheleratie will be given in the form of votate in the course fee applceble enly in any ane cours
 AITS : Al hoda latt Sieres

